259 resultados para Exogenous ochronosis
Resumo:
The carbon dioxide production of the chick embryo cultured in vitro has been determined during the first 24 h of post-laying development using a non-invasive conductometric microtechnique. The mean CO2 production of the whole blastoderm (1) increased from 16 nmol/h at laying to 231 nmol/h at early neurulation, (2) became dependent on exogenous glucose and (3) was closely linked to mechanical tension generated in the blastoderm (loosening from vitelline membrane resulted in a decrease of 56%). In our experimental conditions, no significant influence of carbonic anhydrase on the CO2 production has been detected. The value of the respiratory exchange ratio varied from about 3 at pregastrular stages to 1 at neurula stage and CO2 was produced transiently in presence of antimycin A. Such results indicate that the source of CO2 is not exclusively mitochondrial and that the relative proportions of mitochondrial and non-mitochondrial CO2 productions might vary significantly throughout the early development. Our findings confirm that the metabolism of the chick embryo becomes more and more oxidative from laying onwards and suggest that the modifications of metabolism observed during the studied period of development could be associated with functional differentiation.
Resumo:
Tribulus terrestris is a nutritional supplement highly debated regarding its physiological and actual effects on the organism. The main claimed effect is an increase of testosterone anabolic and androgenic action through the activation of endogenous testosterone production. Even if this biological pathway is not entirely proven, T. terrestris is regularly used by athletes. Recently, the analysis of two female urine samples by GC/C/IRMS (gas chromatography/combustion/isotope-ratio-mass-spectrometry) conclusively revealed the administration of exogenous testosterone or its precursors, even if the testosterone glucuronide/epitestosterone glucuronide (T/E) ratio and steroid marker concentrations were below the cut-off values defined by World Anti-Doping Agency (WADA). To argue against this adverse analytical finding, the athletes recognized having used T. terrestris in their diet. In order to test this hypothesis, two female volunteers ingested 500 mg of T. terrestris, three times a day and for two consecutive days. All spot urines were collected during 48 h after the first intake. The (13)C/(12)C ratio of ketosteroids was determined by GC/C/IRMS, the T/E ratio and DHEA concentrations were measured by GC/MS and LH concentrations by radioimmunoassay. None of these parameters revealed a significant variation or increased above the WADA cut-off limits. Hence, the short-term treatment with T. terrestris showed no impact on the endogenous testosterone metabolism of the two subjects.
Resumo:
For free-breathing, high-resolution, three-dimensional coronary magnetic resonance angiography (MRA), the use of intravascular contrast agents may be helpful for contrast enhancement between coronary blood and myocardium. In six patients, 0.1 mmol/kg of the intravascular contrast agent MS-325/AngioMARK was given intravenously followed by double-oblique, free-breathing, three-dimensional inversion-recovery coronary MRA with real-time navigator gating and motion correction. Contrast-enhanced, three-dimensional coronary MRA images were compared with images obtained with a T2 prepulse (T2Prep) without exogenous contrast. The contrast-enhanced images demonstrated a 69% improvement in the contrast-to-noise ratio (6.6 +/- 1.1 vs. 11.1 +/- 2.5; P < 0.01) compared with the T2Prep approach. By using the intravascular agent, extensive portions (> 80 mm) of the native left and right coronary system could be displayed consistently with sub-millimeter in-plane resolution. The intravascular contrast agent, MS-325/AngioMARK, leads to a considerable enhancement of the blood/muscle contrast for coronary MRA compared with T2Prep techniques. The clinical value of the agent remains to be defined in a larger patient series. J. Magn. Reson. Imaging 1999;10:790-799.
Resumo:
Rapport de synthèse : La consommation de boissons sucrées contenant du fructose a remarquablement augmenté ces dernières décennies et, on pense qu'elle joue un rôle important dans l'épidémie actuelle d'obésité et de troubles métaboliques. Des études faites sur des rats ont montré qu'une alimentation riche en sucre ou fructose induisait une obésité, une résistance à l'insuline, diabète, dyslipidémie et une hypertension artérielle, tandis que chez l'homme, une alimentation riche en fructose conduit, après quelques jours, au développement d'une hypertryglycémie et une résistance hépatique à l'insuline. Nous avons entrepris une étude de 7 jours d'alimentation riche en fructose ou d'une alimentation contrôlée chez six hommes en bonne santé. Les NEFA plasmatiques et la beta-hydroxybutyrate, l'oxydation nette de lipide (calorimétrie indirecte) et l'oxydation exogène de lipide (13 CO2) ont été surveillés dans des conditions basales, et après un chargement en lipide (huile d'olive marqué au 13C-trioléine), puis durant un stress mental standardisé. La clearance de lactate et les effets métaboliques de la perfusion de lactate exogène ont également été évalués. Nos résultats ont montré que l'alimentation riche en fructose diminue la concentration plasmatique de NEFA, de beta-hydroxybutyrate de même que l'oxydation des lipides dans les conditions de bases et après surcharge en lipides. De plus, l'alimentation riche en fructose amortie l'augmentation des NEFA plasmatique et l'oxydation des lipides exogènes durant le stress mental. Elle augmente également la concentration basale de lactate et la production de lactate de respectivement 31.8% et 53.8%, tandis que la clearance du lactate reste inchangée. L'injection de lactate diminue le taux des NEFA lors de l'alimentation de contrôle et l'alimentation de base, et l'oxydation nette de lipide lors de l'alimentation de contrôle et l'alimentation riche en fructose. Ces résultats indiquent que 7 jours d'alimentation riche en fructose inhibent remarquablement la lipolyse et l'oxydation des lipides. L'alimentation riche en fructose augmente aussi la production de lactate, et l'augmentation de l'utilisation de lactate peut contribuer à supprimer l'oxydation des lipides. Abstact : The effects of a 7 d high-fructose diet (HFrD) or control diet on lipid metabolism were studied in a group of six healthy lean males. Plasma NEFA and β-hydroxybutyrate concentrations, net lipid oxidation (indirect calorimetry) and exogenous lipid oxidation (13CO2 production) were monitored in basal conditions, after lipid loading (olive oil labelled with [13C] triolein) and during a standardised mental stress. Lactate clearance and the metabolic effects of an exogenous lactate infusion were also monitored. The HFrD lowered plasma concentrations of NEFA and (β-hydroxybutyrate as well as lipid oxidation in both basal and after lipid-loading conditions. In addition, the HFrD blunted the increase in plasma NEFA and exogenous lipid oxidation during mental stress. The HFrD also increased basal lactate concentrations by 31.8%, and lactate production by 53.8 %, while lactate clearance remained unchanged. Lactate infusion lowered plasma NEFA with the control diet, and net lipid oxidation with both the HFrD and control diet. These results indicate that a 7 d HFrD markedly inhibits lipolysis and lipid oxidation. The HFrD also increases lactate production, and the ensuing increased lactate utilisation may contribute to suppress lipid oxidation.
Resumo:
Pseudomonas aeruginosa, une bactérie environnementale ubiquitaire, est un des pathogènes nosocomiaux les plus fréquents aux soins intensifs. La source de ce microorganisme peut être soit endogène, 2,6 à 24 % des patients hospitalisés étant colonisés au niveau digestif, soit exogène. La proportion des cas d'infections à P. aeruginosa d'origine exogène, donc secondaires à une transmission par manuportage ou par l'eau du réseau utilisée pour la toilette ou d'autres soins, reste débattue. Or une meilleure évaluation du taux d'infections exogènes est importante pour la mise en place de mesures de contrôle appropriées. Le but de cette étude était de déterminer sur une période de 10 ans les rôles respectifs des sources exogènes (robinets, autres patients) et endogène dans la colonisation et/ou l'infection par P.aeruginosa chez les patients des Soins Intensifs, ainsi que de documenter les variations épidémiologiques au cours du temps. L'étude a été menée dans les unités de Soins Intensifs du Centre Hospitalier Universitaire Vaudois (CHUV). Les patients colonisés et/ou infectés par P. aeruginosa entre 1998 et 2007ont été identifiés via la base de données du laboratoire de microbiologie. Ils ont été inclus dans l'étude s'ils étaient hospitalisés dans une des unités de Soins Intensifs, Durant cette période, des prélèvements pour recherche de P. aeruginosa ont été effectués sur des robinets des soins intensifs. Un typage moléculaire a été effectué sur toutes les souches cliniques et environnementales isolées en 1998, 2000, 2003, 2004 et 2007. Les patients inclus dans l'étude ont été répartis en quatre catégories (A-D) selon le résultat du typage moléculaire leur souche de P. aeruginosa. La catégorie A inclut les cas pour lesquels le génotype de P. aeruginosa est identique à un des génotypes retrouvé dans l'environnement. La catégorie B comprend les cas pour lesquels le génotype est identique à celui d'au moins un autre patient. La catégorie C comprend les cas avec un génotype unique et la catégorie D comprend les cas pour lesquels la souche était non disponible pour le typage. Les cas des catégories A et B sont considérés comme ayant une origine exogène. Au cours des années de l'étude, le nombre d'admissions aux soins intensifs est resté stable. En moyenne, 86 patients par année ont été identifiés colonisés ou infectés par P. aeruginosa aux Soins Intensifs. Durant la première année d'investigation, un grand nombre de patients colonisés par une souche de P. aeruginosa identique à une de celles retrouvées dans l'environnement a été mis en évidence. Par la suite, possiblement suite à l'augmentation de la température du réseau d'eau chaude, le nombre de cas dans la catégorie A a diminué. Dans la catégorie B, le nombre de cas varie de 1,9 à 20 cas/1000 admissions selon les années. Ce nombre est supérieur à 10 cas/1000 admissions en 1998, 2003 et 2007 et correspond à des situations épidémiques transitoires. Tout au long des 10 ans de l'étude, le nombre de cas dans la catégorie C (source endogène) est demeuré stable et indépendant des variations du nombre de cas dans les catégories A et B. En conclusion, la contribution relative des réservoirs endogène et exogène dans la colonisation et/ou l'infection des patients de soins Intensifs varie au cours du temps. Les facteurs principaux qui contribuent à de telles variations sont probablement le degré de contamination de l'environnement, la compliance des soignants aux mesures de contrôle des infections et la génétique du pathogène lui-même. Etant donné que ce germe est ubiquitaire dans l'environnement aqueux et colonise jusqu'à 15% des patients hospitalisés, la disparition de son réservoir endogène semble difficile. Cependant, cette étude démontre que son contrôle est possible dans l'environnement, notamment dans les robinets en augmentant la température de l'eau. De plus, si une souche multi-résistante est retrouvée de manière répétée dans l'environnement, des efforts doivent être mis en place pour éliminer cette souche. Des efforts doivent être également entrepris afin de limiter la transmission entre les patients, qui est une cause importante et récurrente de contamination exogène. - Pseudomonas aeruginosa is one of the leading nosocomial pathogens in intensive care units (ICUs). The source of this microorganism can be either endogenous or exogenous. The proportion of cases as a result of transmission is still debated, and its elucidation is important for implementing appropriate control measures. To understand the relative importance of exogenous vs. endogenous sources of P. aeru¬ginosa, molecular typing was performed on all available P. aeruginosa isolated from ICU clinical and environmental specimens in 1998, 2000, 2003, 2004 and 2007. Patient samples were classified according to their P. aeruginosa genotypes into three categories: (A) identical to isolate from faucet; (B) identical to at least one other patient sample and not found in faucet; and (C) unique genotype. Cases in cat¬egories A and Β were considered as possibly exogenous, and cases in category C as possibly endogenous. A mean of 34 cases per 1000 admissions per year were found to be colonized or infected by P. aeruginosa. Higher levels of faucet contamination were correlated with a higher number of cases in category A. The number of cases in category Β varied from 1.9 to 20 cases per 1000 admissions. This num¬ber exceeded 10/1000 admissions on three occasions and was correlated with an outbreak on one occasion. The number of cases con¬sidered as endogenous (category C) was stable and independent of the number of cases in categories A and B. The present study shows that repeated molecular typing can help identify variations in the epidemiology of P. aeruginosa in ICU patients and guide infection control measures.
Resumo:
The purpose of this study was to assess the inhibitory effect of TCV-116, an orally active angiotensin II (Ang II) antagonist, on the pressor action of exogenous Ang II and to determine the compensatory rise in plasma renin activity and Ang II levels. Twenty-three male volunteers were treated for 8 days in a double-blind fashion with either placebo or TCV-116 (1, 2, or 4 mg PO daily) and challenged on the first, fourth, and eighth days with repeated bolus injections of Ang II. An additional 4 subjects received 8 mg PO daily in a single-blind fashion. The inhibitory effect on the systolic blood pressure response to Ang II was long lasting and clearly dose related. Six hours after 4 mg TCV-116, the systolic blood pressure response to a given dose of Ang II was reduced to 40 +/- 4% and 35 +/- 8% of baseline value on days 1 and 8, respectively. TCV-116 induced a dose-related increase in plasma renin activity and Ang II levels that was more pronounced on the eighth than on the first day of drug administration. Despite this compensatory mechanism, the relation between the time-integrated systolic blood pressure response to Ang II and the time-integrated CV-11974 levels, the active metabolite of TCV-116, was not different between days 1 and 8. In conclusion, TCV-116 appears to be a well-tolerated, orally active, potent, and long-lasting antagonist of Ang II in men.
Resumo:
Hepatic glucose production is autoregulated during infusion of gluconeogenic precursors. In hyperglycemic patients with multiple trauma, hepatic glucose production and gluconeogenesis are increased, suggesting that autoregulation of hepatic glucose production may be defective. To better understand the mechanisms of autoregulation and its possible alterations in metabolic stress, lactate was coinfused with glucose in healthy volunteers and in hyperglycemic patients with multiple trauma or critical illness. In healthy volunteers, infusion of glucose alone nearly abolished endogenous glucose production. Lactate increased gluconeogenesis (as indicated by a decrease in net carbohydrate oxidation with no change in total [13C]carbohydrate oxidation) but did not increase endogenous glucose production. In patients with metabolic stress, endogenous glucose production was not suppressed by exogenous glucose, but lactate did not further increase hepatic glucose production. It is concluded that 1) in healthy humans, autoregulation of hepatic glucose production during infusion of lactate is still present when glycogenolysis is suppressed by exogenous glucose and 2) autoregulation of hepatic glucose production is not abolished in hyperglycemic patients with metabolic stress.
Resumo:
A number of recent investigations in man have demonstrated that a low ratio of fat to carbohydrate oxidation (i.e., a high respiratory quotient or RQ) was associated with actual and/or subsequent body weight gain in obese non-diabetic Pima Indians, in American men of various ages and in post-obese European women investigated shortly after the cessation of a hypocaloric diet. It is well known that numerous exogenous and endogenous factors influence the RQ at rest such as: the level of feeding (positive vs. negative energy balance), the composition of food eaten (high vs. low carbohydrate), the size of the glycogen stores, the amount of adipose tissue as well as genetic factors. It should be stressed that some nutritional situations can co-exist during which a low ratio of fat to carbohydrate is observed (i.e., a high RQ) despite weight loss. Furthermore, in most studies mentioned above, the low fat to carbohydrate oxidation ratio explains less than 10% of the variance in weight gain, suggesting that numerous additional factors also play a substantial role in the onset of weight gain. It is concluded that: 1) a low fat to carbohydrate oxidation ratio or an abnormal fat oxidation is difficult to define quantitatively since it is largely influenced by the energy level and the composition of the diet.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The current literature on the role of interleukin (IL)-2 in memory CD8+ T-cell differentiation indicates a significant contribution of IL-2 during primary and also secondary expansion of CD8+ T cells. IL-2 seems to be responsible for optimal expansion and generation of effector functions following primary antigenic challenge. As the magnitude of T-cell expansion determines the numbers of memory CD8+ T cells surviving after pathogen elimination, these event influence memory cell generation. Moreover, during the contraction phase of an immune respons where most antigen-specific CD8+ T cells disappear by apoptosis, IL-2 signals are able to rescu CD8+ T cells from cell death and provide a durable increase in memory CD8+ T-cell counts. At the memory stage, CD8+ T-cell frequencies can be boosted by administration of exogenous IL-2 Significantly, only CD8+ T cells that have received IL-2 signals during initial priming are able t mediate efficient secondary expansion following renewed antigenic challenge. Thus, IL-2 signals during different phases of an immune response are key in optimizing CD8+ T-cell functions, thereby affecting both primary and secondary responses of these T cells.
Resumo:
BACKGROUND: Acute blockade of the renin-angiotensin system with the parenterally active angiotensin II antagonist saralasin has been shown to effectively lower blood pressure in a large fraction of patients with essential hypertension and to improve haemodynamics in some patients with congestive heart failure. It is now possible to chronically antagonize angiotensin II at its receptor using non-peptide angiotensin II inhibitors such as losartan (DuP 753/MK-954) or TCV 116. EFFECT OF NON-PEPTIDE ANGIOTENSIN II ANTAGONISTS: When administered by mouth, DuP 753 and TCV 116 induce dose-dependent inhibition of the pressor response to exogenous angiotensin II. This effect is closely related to circulating levels of the corresponding active metabolites E3174 and CV11974. Preliminary studies performed in hypertensive patients suggest that losartan lowers blood pressure to an equivalent extent to an angiotensin converting enzyme (ACE) inhibitor. CONCLUSIONS: Further investigation is required to show whether these new angiotensin II antagonists compounds compare favourably with ACE inhibitors.
Resumo:
Peroxisome proliferators regulate the transcription of genes by activating ligand-dependent transcription factors, which, due to their structure and function, can be assigned to the superfamily of nuclear hormone receptors. Three such peroxisome proliferator-activated receptors (PPAR alpha, beta, and gamma) have been cloned in Xenopus laevis. Their mRNAs are expressed differentially; xPPAR alpha and beta but not xPPAR gamma are expressed in oocytes and embryos. In the adult, expression of xPPAR alpha and beta appears to be ubiquitous, and xPPAR gamma is mainly observed in adipose tissue and kidney. Immunocytochemical analysis revealed that PPARs are nuclear proteins, and that their cytoplasmic-nuclear translocation is independent of exogenous activators. A target gene of PPARs is the gene encoding acyl-CoA oxidase (ACO), which catalyzes the rate-limiting step in the peroxisomal beta-oxidation of fatty acids. A peroxisome proliferator response element (PPRE), to which PPARs bind, has been identified within the promoter of the ACO gene. Besides the known xenobiotic activators of PPARs, such as hypolipidemic drugs, natural activators have been identified. Polyunsaturated fatty acids at physiological concentrations are efficient activators of PPARs, and 5,8,11,14-eicosatetraynoic acid (ETYA), which is the alkyne homolog of arachidonic acid, is the most potent activator of xPPAR alpha described to date. Taken together, our data suggest that PPARs have an important role in lipid metabolism.
Resumo:
The role of cytochrome P450 in the metabolism of dextromethorphan, amitriptyline, midazolam, S-mephenytoin, citalopram, fluoxetine and sertraline was investigated in rat and human brain microsomes. Depending on the parameters, the limit of quantification using gas chromatography-mass spectrometry methods was between 1.6 and 20 pmol per incubation, which generally contained 1500 microg protein. Amitriptyline was shown to be demethylated to nortriptyline by both rat and human microsomes. Inhibition studies using ketoconazole, furafylline, sulfaphenazole, omeprazole and quinidine suggested that CYP3A4 is the isoform responsible for this reaction whereas CYP1A2, CYP2C9, CYP2C19 and CYP2D6 do not seem to be involved. This result was confirmed by using a monoclonal antibody against CYP3A4. Dextromethorphan was metabolized to dextrorphan in rat brain microsomes and was inhibited by quinidine and by a polyclonal antibody against CYP2D6. Only the addition of exogenous reductase allowed the measurement of this activity in human brain microsomes. Metabolites of the other substrates could not be detected, possibly due to an insufficiently sensitive method. It is concluded that cytochrome P450 activity in the brain is very low, but that psychotropic drugs could undergo a local cerebral metabolism which could have pharmacological and/or toxicological consequences.
Resumo:
OBJECTIVES: There are some common occupational agents and exposure circumstances where evidence of carcinogenicity is substantial but not yet conclusive for humans. The objectives are to identify research gaps and needs for twenty agents prioritized for review based on evidence of widespread human exposures and potential carcinogenicity in animals or humans. DATA SOURCES: A systematic review was conducted of new data published since the most recent pertinent IARC monograph meeting. DATA EXTRACTION: Reviewers were charged with identifying data gaps and general and specific approaches to address them, focusing on research that would be important in resolving classification uncertainties. An expert meeting brought reviewers together to discuss each agent and the identified data gaps and approaches. DATA SYNTHESIS: Several overarching issues were identified that pertained to multiple agents; these included the importance of recognizing that carcinogenic agents can act through multiple toxicity pathways and mechanisms, including epigenetic mechanisms, oxidative stress and immuno- and hormonal modulation. CONCLUSIONS: Studies in occupational populations provide important opportunities to understand the mechanisms through which exogenous agents cause cancer and intervene to prevent human exposure and/or prevent or detect cancer among those already exposed. Scientific developments are likely to increase the challenges and complexities of carcinogen testing and evaluation in the future, and epidemiologic studies will be particularly critical to inform carcinogen classification and risk assessment processes.[Authors]
Resumo:
A recombinant baculovirus encoding a single-chain murine major histocompatibility complex class I molecule in which the first three domains of H-2Kd are fused to beta 2-microglobulin (beta 2-m) via a 15-amino acid linker has been isolated and used to infect lepidopteran cells. A soluble, 391-amino acid single-chain H-2Kd (SC-Kd) molecule of 48 kDa was synthesized and glycosylated in insect cells and could be purified in the absence of detergents by affinity chromatography using the anti-H-2Kd monoclonal antibody SF1.1.1.1. We tested the ability of SC-Kd to bind antigenic peptides using a direct binding assay based on photoaffinity labeling. The photoreactive derivative was prepared from the H-2Kd-restricted Plasmodium berghei circumsporozoite protein (P.b. CS) peptide 253-260 (YIPSAEKI), a probe that we had previously shown to be unable to bind to the H-2Kd heavy chain in infected cells in the absence of co-expressed beta 2-microglobulin. SC-Kd expressed in insect cells did not require additional mouse beta 2-m to bind the photoprobe, indicating that the covalently attached beta 2-m could substitute for the free molecule. Similarly, binding of the P.b. CS photoaffinity probe to the purified SC-Kd molecule was unaffected by the addition of exogenous beta 2-m. This is in contrast to H-2KdQ10, a soluble H-2Kd molecule in which beta 2-m is noncovalently bound to the soluble heavy chain, whose ability to bind the photoaffinity probe is greatly enhanced in the presence of an excess of exogenous beta 2-m. The binding of the probe to SC-Kd was allele-specific, since labeling was selectively inhibited only by antigenic peptides known to be presented by the H-2Kd molecule.
Resumo:
Cardiac morphogenesis and function are known to depend on both aerobic and anaerobic energy-producing pathways. However, the relative contribution of mitochondrial oxidation and glycogenolysis, as well as the determining factors of oxygen demand in the distinct chambers of the embryonic heart, remains to be investigated. Spontaneously beating hearts isolated from stage 11, 20, and 24HH chick embryos were maintained in vitro under controlled metabolic conditions. O(2) uptake and glycogenolytic rate were determined in atrium, ventricle, and conotruncus in the absence or presence of glucose. Oxidative capacity ranged from 0.2 to 0.5 nmol O(2)/(h.microg protein), did not depend on exogenous glucose, and was the highest in atria at stage 20HH. However, the highest reserves of oxidative capacity, assessed by mitochondrial uncoupling, were found at the youngest stage and in conotruncus, representing 75 to 130% of the control values. At stage 24HH, glycogenolysis in glucose-free medium was 0.22, 0.17, and 0.04 nmol glucose U(h.microg protein) in atrium, ventricle, and conotruncus, respectively. Mechanical loading of the ventricle increased its oxidative capacity by 62% without altering glycogenolysis or lactate production. Blockade of glycolysis by iodoacetate suppressed lactate production but modified neither O(2) nor glycogen consumption in substrate-free medium. These findings indicate that atrium is the cardiac chamber that best utilizes its oxidative and glycogenolytic capacities and that ventricular wall stretch represents an early and major determinant of the O(2) uptake. Moreover, the fact that O(2) and glycogen consumptions were not affected by inhibition of glyceraldehyde-3-phosphate dehydrogenase provides indirect evidence for an active glycerol-phosphate shuttle in the embryonic cardiomyocytes.