400 resultados para Equivalente de dose individual
Resumo:
BACKGROUND: International comparisons of social inequalities in alcohol use have not been extensively investigated. The purpose of this study was to examine the relationship of country-level characteristics and individual socio-economic status (SES) on individual alcohol consumption in 33 countries. METHODS: Data on 101,525 men and women collected by cross-sectional surveys in 33 countries of the GENACIS study were used. Individual SES was measured by highest attained educational level. Alcohol use measures included drinking status and monthly risky single occasion drinking (RSOD). The relationship between individuals' education and drinking indicators was examined by meta-analysis. In a second step the individual level data and country data were combined and tested in multilevel models. As country level indicators we used the Purchasing Power Parity of the gross national income, the Gini coefficient and the Gender Gap Index. RESULTS: For both genders and all countries higher individual SES was positively associated with drinking status. Also higher country level SES was associated with higher proportions of drinkers. Lower SES was associated with RSOD among men. Women of higher SES in low income countries were more often RSO drinkers than women of lower SES. The opposite was true in higher income countries. CONCLUSION: For the most part, findings regarding SES and drinking in higher income countries were as expected. However, women of higher SES in low and middle income countries appear at higher risk of engaging in RSOD. This finding should be kept in mind when developing new policy and prevention initiatives.
Resumo:
BACKGROUND: Unexplained fatigue is often left untreated or treated with antidepressants. This randomized, placebo-controlled, single-blinded study evaluated the efficacy and tolerability of single-dose intravenous ferric carboxymaltose (FCM) in iron-deficient, premenopausal women with symptomatic, unexplained fatigue. METHODS: Fatigued women (Piper Fatigue Scale [PFS] score ≥5) with iron deficiency (ferritin <50 µg/L and transferrin saturation <20%, or ferritin <15 µg/L) and normal or borderline hemoglobin (≥115 g/L) were enrolled in 21 sites in Austria, Germany, Sweden and Switzerland, blinded to the study drug and randomized (computer-generated randomization sequence) to a single FCM (1000 mg iron) or saline (placebo) infusion. Primary endpoint was the proportion of patients with reduced fatigue (≥1 point decrease in PFS score from baseline to Day 56). RESULTS: The full analysis included 290 women (FCM 144, placebo 146). Fatigue was reduced in 65.3% (FCM) and 52.7% (placebo) of patients (OR 1.68, 95%CI 1.05-2.70; p = 0.03). A 50% reduction of PFS score was achieved in 33.3% FCM- vs. 16.4% placebo-treated patients (p<0.001). At Day 56, all FCM-treated patients had hemoglobin levels ≥120 g/L (vs. 87% at baseline); with placebo, the proportion decreased from 86% to 81%. Mental quality-of-life (SF-12) and the cognitive function scores improved better with FCM. 'Power of attention' improved better in FCM-treated patients with ferritin <15 µg/L. Treatment-emergent adverse events (placebo 114, FCM 209; most frequently headache, nasopharyngitis, pyrexia and nausea) were mainly mild or moderate. CONCLUSION: A single infusion of FCM improved fatigue, mental quality-of-life, cognitive function and erythropoiesis in iron-deficient women with normal or borderline hemoglobin. Although more side effects were reported compared to placebo, FCM can be an effective alternative in patients who cannot tolerate or use oral iron, the common treatment of iron deficiency. Overall, the results support the hypothesis that iron deficiency can affect women's health, and a normal iron status should be maintained independent of hemoglobin levels. TRIAL REGISTRATION: ClinicalTrials.gov NCT01110356.
Resumo:
BACKGROUND: Iterative reconstruction (IR) techniques reduce image noise in multidetector computed tomography (MDCT) imaging. They can therefore be used to reduce radiation dose while maintaining diagnostic image quality nearly constant. However, CT manufacturers offer several strength levels of IR to choose from. PURPOSE: To determine the optimal strength level of IR in low-dose MDCT of the cervical spine. MATERIAL AND METHODS: Thirty consecutive patients investigated by low-dose cervical spine MDCT were prospectively studied. Raw data were reconstructed using filtered back-projection and sinogram-affirmed IR (SAFIRE, strength levels 1 to 5) techniques. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured at C3-C4 and C6-C7 levels. Two radiologists independently and blindly evaluated various anatomical structures (both dense and soft tissues) using a 4-point scale. They also rated the overall diagnostic image quality using a 10-point scale. RESULTS: As IR strength levels increased, image noise decreased linearly, while SNR and CNR both increased linearly at C3-C4 and C6-C7 levels (P < 0.001). For the intervertebral discs, the content of neural foramina and dural sac, and for the ligaments, subjective image quality scores increased linearly with increasing IR strength level (P ≤ 0.03). Conversely, for the soft tissues and trabecular bone, the scores decreased linearly with increasing IR strength level (P < 0.001). Finally, the overall diagnostic image quality scores increased linearly with increasing IR strength level (P < 0.001). CONCLUSION: The optimal strength level of IR in low-dose cervical spine MDCT depends on the anatomical structure to be analyzed. For the intervertebral discs and the content of neural foramina, high strength levels of IR are recommended.
Resumo:
Treatment of hypertension remains a difficult task despite the availability of different types of medications lowering blood pressure by different mechanisms. In order to reach the target blood pressures recommended today combination therapy is required in most patients. The co-administration of two drugs with different impacts on the cardiovascular system markedly increases the antihypertensive effectiveness without altering adversely tolerability. Fixed low-dose combinations are becoming a valuable option not only as second-line, but also as first-line therapy. In this respect the co-administration of thiazide diuretic with an AT(1)-receptor blocker is particularly appealing. The diuretic-induced decrease in total body sodium activates the renin-angiotensin system, thus rendering blood pressure maintenance angiotensin II-dependent. During blockade of the renin-angiotensin system low doses of thiazides generally suffice, allowing the prevention of undesirable metabolic effects. Also, blockade of the AT(1)-receptor, particularly when angiotensin II production is enhanced in response to diuretic therapy, is expected to be beneficial, since angiotensin II seems to contribute importantly to the pathogenesis of cardiovascular and renal complications of hypertension.
Resumo:
The blood pressure (BP) lowering effect of the orally active angiotensin converting enzyme inhibitor, captopril (SQ14225), was studied in 59 hypertensive patients maintained on a constant sodium intake. Within 2 hours of the first dose of captopril BP fell from 171/107 to a maximum low of 142/92 mm Hg (p less than 0.001), and after 4 to 8 days to treatment BP averaged 145/94 mm Hg (p less than 0.001). The magnitude of BP drop induced by captopril was significantly correlated to baseline plasma renin activity (PRA) both during the acute phase (r = -0.38, p less than 0.01) and after the 4 to 8-day interval (r = -0.33, p less than 0.01). Because of considerable scatter in individual data, renin profiling was not precisely predictive of the immediate or delayed BP response of separate patients. However, the BP levels achieved following the initial dose of captopril were closely correlated to BP measured after 4 to 8 days of therapy, and appeared to have greater predictive value than control PRA of the long-term efficacy of chronic captopril therapy despite marked BP changes occurring in some patients during the intermediate period. Because of these intermediate BP changes, addition of a diuretic to enhance antihypertensive effectiveness of angiotensin blockade should be restrained for several days after initiation of captopril therapy.
Resumo:
Mitochondria in intact cells maintain low Na(+) levels despite the large electrochemical gradient favoring cation influx into the matrix. In addition, they display individual spontaneous transient depolarizations. The authors report here that individual mitochondria in living astrocytes exhibit spontaneous increases in their Na(+) concentration (Na(mit)(+) spiking), as measured using the mitochondrial probe CoroNa Red. In a field of view with approximately 30 astrocytes, up to 1,400 transients per minute were typically detected under resting conditions. Na(mit)(+) spiking was also observed in neurons, but was scarce in two nonneural cell types tested. Astrocytic Na(mit)(+) spikes averaged 12.2 +/- 0.8 s in duration and 35.5 +/- 3.2 mM in amplitude and coincided with brief mitochondrial depolarizations; they were impaired by mitochondrial depolarization and ruthenium red pointing to the involvement of a cation uniporter. Na(mit)(+) spiking activity was significantly inhibited by mitochondrial Na(+)/H(+) exchanger inhibition and sensitive to cellular pH and Na(+) concentration. Ca(2+) played a permissive role on Na(mit)(+) spiking activity. Finally, the authors present evidence suggesting that Na(mit)(+) spiking frequency was correlated with cellular ATP levels. This study shows that, under physiological conditions, individual mitochondria in living astrocytes exhibit fast Na(+) exchange across their inner membrane, which reveals a new form of highly dynamic and localized functional regulation.
Resumo:
Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. While ground UV irradiance is monitored via different techniques, it is difficult to translate such observations into human UV exposure or dose because of confounding factors. A multi-disciplinary collaboration developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a simulation tool that estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. Dosimetric measurements obtained in field conditions were used to assess the model performance. The model predicted exposure to solar UV adequately with a symmetric mean absolute percentage error of 13% and half of the predictions within 17% range of the measurements. Using this tool, solar UV exposure patterns were investigated with respect to the relative contribution of the direct, diffuse and reflected radiation. Exposure doses for various body parts and exposure scenarios of a standing individual were assessed using erythemally-weighted UV ground irradiance data measured in 2009 at Payerne, Switzerland as input. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 Standard Erythemal Dose, SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e. g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose.
Resumo:
Soluble peptide/MHC-class-I (pMHC) multimers have recently emerged as unique reagents for the study of specific interactions between the pMHC complex and the TCR. Here, we assessed the relative binding efficiency of a panel of multimers incorporating single-alanine-substituted variants of the tumor-antigen-derived peptide MAGE-A10(254-262) to specific CTL clones displaying different functional avidity. For each individual clone, the efficiency of binding of multimers incorporating MAGE-A10 peptide variants was, in most cases, in good although not linear correlation with the avidity of recognition of the corresponding variant. In addition, we observed two types of discrepancies between efficiency of recognition and multimer binding. First, for some peptide variants, efficient multimer binding was detected in the absence of measurable effector functions. Some of these peptide variants displayed antagonist activity. Second, when comparing different clones we found clear discrepancies between the dose of peptide required to obtain half-maximal lysis in CTL assays and the binding efficiency of the corresponding multimers. These discrepancies, however, were resolved when the differential stability of the TCR/pMHC complexes was determined. For individual clones, decreased recognition correlated with increased TCR/pMHC off-rate. TCR/pMHC complexes formed by antagonist ligands displayed off-rates faster than those of TCR/pMHC complexes formed with weak agonists. In addition, when comparing different clones, the efficiency of multimer staining correlated better with relative multimer off-rates than with half-maximal lysis values. Altogether, the data presented here reconcile and extend our previous results on the impact of the kinetics of interaction of TCR with pMHC complexes on multimer binding and underline the crucial role of TCR/pMHC off-rates for the functional outcome of such interactions.
Resumo:
We use panel data from the U. S. Health and Retirement Study, 1992-2002, to estimate the effect of self-assessed health limitations on the active labor market participation of older men. Self-assessments of health are likely to be endogenous to labor supply due to justification bias and individual-specific heterogeneity in subjective evaluations. We address both concerns. We propose a semiparametric binary choice procedure that incorporates nonadditive correlated individual-specific effects. Our estimation strategy identifies and estimates the average partial effects of health and functioning on labor market participation. The results indicate that poor health plays a major role in labor market exit decisions.
Resumo:
Objective: Mephedrone has been recently made illegal in Europe, but little empirical evidence is available on its impact on human cognitive functions. We investigated acute and chronic effects of mephedrone consumption on drug-sensitive cognitive measures, while also accounting for the influence of associated additional drug use and personality features. Method: Twenty-six volunteers from the general population performed tasks measuring verbal learning, verbal fluency and cognitive flexibility before and after a potential drug-taking situation (pre- and post-clubbing at dance clubs, respectively). Participants also provided information on chronic and recent drug use, schizotypal (O-LIFE) and depressive symptoms (Beck depression inventory), sleep pattern and premorbid IQ. Results: We found that i) mephedrone users performed worse than non-users pre-clubbing, and deteriorated from the pre-clubbing to the post-clubbing assessment, ii) pre-clubbing cannabis and amphetamine (not mephedrone) use predicted relative cognitive attenuations, iii) post-clubbing, depression scores predicted relative cognitive attenuations, and iv) schizotypy was largely unrelated to cognitive functioning, apart from a negative relationship between cognitive disorganisation and verbal fluency. Conclusion: Results suggest that polydrug use and depressive symptoms in the general population negatively affect cognition. For schizotypy, only elevated cognitive disorganisation showed potential links to a pathological cognitive profile previously reported along the psychosis dimension.
Resumo:
Au cours des deux dernières décennies, la technique d'imagerie arthro-scanner a bénéficié de nombreux progrès technologiques et représente aujourd'hui une excellente alternative à l'imagerie par résonance magnétique (IRM) et / ou arthro-IRM dans l'évaluation des pathologies de la hanche. Cependant, elle reste limitée par l'exposition aux rayonnements ionisants importante. Les techniques de reconstruction itérative (IR) ont récemment été mis en oeuvre avec succès en imagerie ; la littérature montre que l'utilisation ces dernières contribue à réduire la dose d'environ 40 à 55%, comparativement aux protocoles courants utilisant la rétroprojection filtrée (FBP), en scanner de rachis. A notre connaissance, l'utilisation de techniques IR en arthro-scanner de hanche n'a pas été évaluée jusqu'à présent. Le but de notre étude était d'évaluer l'impact de la technique ASIR (GE Healthcare) sur la qualité de l'image objective et subjective en arthro-scanner de hanche, et d'évaluer son potentiel en terme de réduction de dose. Pour cela, trente sept patients examinés par arthro-scanner de hanche ont été randomisés en trois groupes : dose standard (CTDIvol = 38,4 mGy) et deux groupes de dose réduite (CTDIvol = 24,6 ou 15,4 mGy). Les images ont été reconstruites en rétroprojection filtrée (FBP) puis en appliquant différents pourcentages croissants d'ASIR (30, 50, 70 et 90%). Le bruit et le rapport contraste sur bruit (CNR) ont été mesurés. Deux radiologues spécialisés en imagerie musculo-squelettique ont évalué de manière indépendante la qualité de l'image au niveau de plusieurs structures anatomiques en utilisant une échelle de quatre grades. Ils ont également évalué les lésions labrales et du cartilage articulaire. Les résultats révèlent que le bruit augmente (p = 0,0009) et le CNR diminue (p = 0,001) de manière significative lorsque la dose diminue. A l'inverse, le bruit diminue (p = 0,0001) et le contraste sur bruit augmente (p < 0,003) de manière significative lorsque le pourcentage d'ASIR augmente ; on trouve également une augmentation significative des scores de la qualité de l'image pour le labrum, le cartilage, l'os sous-chondral, la qualité de l'image globale (au delà de ASIR 50%), ainsi que le bruit (p < 0,04), et une réduction significative pour l'os trabuculaire et les muscles (p < 0,03). Indépendamment du niveau de dose, il n'y a pas de différence significative pour la détection et la caractérisation des lésions labrales (n=24, p = 1) et des lésions cartilagineuses (n=40, p > 0,89) en fonction du pourcentage d'ASIR. Notre travail a permis de montrer que l'utilisation de plus de 50% d'ASIR permet de reduire de manière significative la dose d'irradiation reçue par le patient lors d'un arthro-scanner de hanche tout en maintenant une qualité d'image diagnostique comparable par rapport à un protocole de dose standard utilisant la rétroprojection filtrée.
Resumo:
Introduction et objectif: Lors d'essais cliniques, le pharmacien est responsable de la préparation et de la dispensation des médicaments à évaluer. Un article récent a toutefois montré que les aspects pharmaceutiques liés au contrôle de la dose administrée in fine étaient souvent mal contrôlés. Il peut exister une différence entre la dose nominale fournie par le certificat d'analyse du fabricant et la dose réellement administrée au sujet, biais qui se reporte en cascade sur l'estimation des paramètres pharmaco¬cinétiques (PK), comme la clairance ou le volume de distribution. Ce travail visait à évaluer les biais entachant la quantité de médicament réellement injectée (iv/sc) aux volontaires d'un essai clinique étudiant la PK et la relation dose-réponse d'un nouveau produit biotechnologique. Méthode: La dose de médicament administrée lors de l'essai clinique (D) a été calculée de la manière suivante: D = C ? V - pertes. La concentration du produit (C; titre nominal du fabricant) a été vérifiée par immuno-essai. Le volume de médicament injecté (V) a été déterminé pour chaque injection par pesée (n=72), en utilisant la masse de la seringue avant et après injection et la densité du produit. Enfin, une analyse in vitro a permis d'évaluer les pertes liées à l'adsorption du produit dans les lignes de perfusion et de choisir le dispositif adéquat in vivo. Résultats: La concentration du médicament s'est révélée proche du titre nominal (96 ± 7%), et a été utilisée comme référence. Le volume injecté était quant à lui entaché d'un biais systématique par rapport à la valeur théorique correspondant à 0.03 mL pour la dose minimale (i.e. 75% du volume à injecter à cette dose). Une analyse complémentaire a montré que cela s'expliquait par une réaspiration partielle de la solution médica-menteuse avant le retrait de la seringue après injection sc, due à l'élasticité du piston. En iv, le biais était par contre provoqué par une réaspiration du soluté de perfusion co-administré. Enfin, la mesure des quantités de médicament récupérées après injection dans le dispositif de perfusion a démontré des pertes minimales par adsorption. Discussion-conclusion: Cette étude confirme l'existence de biais inversement corrélés au volume et à la concentration du médicament administré, pouvant provoquer des erreurs importantes sur les paramètres PK. Ce problème est négligé ou insuffisamment considéré dans les protocoles de Phase I et nécessiterait une planification rigoureuse. Les procédures opératoires devraient attirer l'attention sur ce point crucial.
Resumo:
Background: CYP2D6 is the key enzyme responsible for tamoxifen bioactivation mainly into endoxifen. This gene is highly polymorphic and breast cancer patients classified as CYP2D6 poor metabolizers (PM) or intermediate metabolizers (IM) appear to show low concentrations of endoxifen and to achieve less benefit from tamoxifen treatment. Purpose: This prospective, open-label trial aimed to assess how the increase of tamoxifen dose influences the level of endoxifen in the different genotype groups (poor-, intermediate-, and extensive-metabolizers (EM)). We examined the impact of doubling tamoxifen dose to 20mg twice daily on endoxifen plasma concentrations across these genotype groups. Patients and methods: Patients were assayed for CYP2D6 genotype and phenotype using dextromethorphan test. Tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen plasma levels were determined on 2 occasions at baseline (20mg/day of tamoxifen) and at day 30, 90 and 120 after dose increase (20 mg twice daily) using liquid chromatography-tandem-mass spectrometry. Endoxifen plasma levels were measured 6 to 24 hours after last drug intake to evaluate its accumulation before and after doubling tamoxifen dosage. ANOVA was used to evaluate endoxifen levels increase and difference between genotype groups. Results: 63 patients are available for analysis to date. Tamoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen and endoxifen plasma reached steady state at 30 day after tamoxifen dose escalation, with a significant increase compared to baseline by 1.6 to 1.8 fold : geometric mean plasma concentrations (CV %) were 140 ng/mL (45%) at baseline vs 255 (47%) at day 30 for tamoxifen (P < 0.0001); 256 (49%) vs 408 (64%) for N-desmethyltamoxifen (P < 0.0001); 2.4 (46%) vs 3.9 (51%) for 4-OH-tamoxifen (P < 0.0001); and 20 (91%) vs 33 (91%) for endoxifen (P < 0.02). On baseline, endoxifen levels tended to be lower in PM: 7 ng/mL (36%), than IM: 16 ng/mL (70%), P=0.08, and EM: 24 ng/mL (71%), P<0.001. After doubling tamoxifen dosage, endoxifen concentrations rose similarly in PM, IM and EM with respectively, 1.5 (18%), 1.5 (28%) and 1.7 (30%) fold increase from baseline, P=0.18. Conclusion: Endoxifen exposure varies widely under standard tamoxifen dosage, with CYP2D6 genotype explaining only a minor part of this variability. It increases consistently on doubling tamoxifen dose, similarly across genotypes. This would enable exposure optimization based on concentration monitoring.
Resumo:
This review on intra-individual factors affecting drug metabolism completes our series on the biochemistry of drug metabolism. The article presents the molecular mechanisms causing intra-individual differences in enzyme expression and activity. They include enzyme induction by transcriptional activation and enzyme inhibition on the protein level. The influencing factors are of physiological, pathological, or external origin. Tissue characteristics and developmental age strongly influence enzyme-expression patterns. Further influencing factors are pregnancy, disease, or biological rhythms. Xenobiotics, drugs, constituents of herbal remedies, food constituents, ethanol, and tobacco can all influence enzyme expression or activity and, hence, affect drug metabolism.