365 resultados para Drug Trafficking
Resumo:
The development of orally active small molecule inhibitors of the epidermal growth factor receptor (EGFR) has led to new treatment options for non-small cell lung cancer (NSCLC). Patients with activating mutations of the EGFR gene show sensitivity to, and clinical benefit from, treatment with EGFR tyrosine kinase inhibitors (EGFR-TKls). First generation reversible ATP-competitive EGFR-TKls, gefitinib and erlotinib, are effective as first, second-line or maintenance therapy. Despite initial benefit, most patients develop resistance within a year, 50-60% of cases being related to the appearance of a T790M gatekeeper mutation. Newer, irreversible EGFR-TKls - afatinib and dacomitinib - covalently bind to and inhibit multiple receptors in the ErbB family (EGFR, HER2 and HER4). These agents have been mainly evaluated for first-line treatment but also in the setting of acquired resistance to first-generation EGFR-TKls. Afatinib is the first ErbB family blocker approved for patients with NSCLC with activating EGFR mutations; dacomitinib is in late stage clinical development. Mutant-selective EGFR inhibitors (AZD9291, CO-1686, HM61713) that specifically target the T790M resistance mutation are in early development. The EGFR-TKIs differ in their spectrum of target kinases, reversibility of binding to EGFR receptor, pharmacokinetics and potential for drug-drug interactions, as discussed in this review. For the clinician, these differences are relevant in the setting of polymedicated patients with NSCLC, as well as from the perspective of innovative anticancer drug combination strategies.
Resumo:
Polar transport of the signaling molecule auxin is critical for plant development and depends on both the polar distribution of auxin efflux carriers, which pump auxin out of the cell and the alignment of these polarized cells. Two papers in this issue of Cell (Michniewicz et al., 2007; Jaillais et al., 2007) address how polar transport of these carriers occurs and describe the endosomal pathways involved.
Resumo:
The profiling of MDMA tablets can be carried out using different sets of characteristics. The first type of measurements performed on MDMA tablets are physical characteristics (i.e. post-tabletting characteristics). They yield preliminary profiling data that may be valuable in a first stage for investigation purposes. However organic impurities (i.e. pre-tabletting characteristics) are generally considered to bring more reliable information, particularly for presentation of evidence in court. This work aimed therefore at evaluating the added value of combining pre-tabletting characteristics and post-tabletting characteristics of seized MDMA tablets. In approximately half of the investigated cases, the post-tabletting links were confirmed with organic impurities analyses. In the remaining cases, post-tabletting batches (post-TBs) were divided in several pre-tabletting batches (pre-TBs), thus supporting the hypothesis that several production batches of MDMA powder (pre-TBs) were used to produce one single post-TB (i.e. tablets having the same shape, diameter, thickness, weight and score; but different organic impurities composition). In view of the obtained results, the hypotheses were discussed through illustrating examples. In conclusion, both sets of characteristics were found relevant alone and combined together. They actually provide distinct information about MDMA illicit production and trafficking.
Resumo:
Induction of drug-metabolizing enzymes (DMEs) is highly species-specific and can lead to drug-drug interaction and toxicities. In this series of studies we tested the species specificity of the antidiabetic drug development candidate and mixed peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist (S)-4-O-tolylsulfanyl-2-(4-trifluormethyl-phenoxy)-butyric acid (EMD 392949, EMD) with regard to the induction of gene expression and activities of DMEs, their regulators, and typical PPAR target genes. EMD clearly induced PPARalpha target genes in rats in vivo and in rat hepatocytes but lacked significant induction of DMEs, except for cytochrome P450 (P450) 4A. CYP2C and CYP3A were consistently induced in livers of EMD-treated monkeys. Interestingly, classic rodent peroxisomal proliferation markers were induced in monkeys after 17 weeks but not after a 4-week treatment, a fact also observed in human hepatocytes after 72 h but not 24 h of EMD treatment. In human hepatocyte cultures, EMD showed similar gene expression profiles and induction of P450 activities as in monkeys, indicating that the monkey is predictive for human P450 induction by EMD. In addition, EMD induced a similar gene expression pattern as the PPARalpha agonist fenofibrate in primary rat and human hepatocyte cultures. In conclusion, these data showed an excellent correlation of in vivo data on DME gene expression and activity levels with results generated in hepatocyte monolayer cultures, enabling a solid estimation of human P450 induction. This study also clearly highlighted major differences between primates and rodents in the regulation of major inducible P450s, with evidence of CYP3A and CYP2C inducibility by PPARalpha agonists in monkeys and humans.
Resumo:
Objective: Status epilepticus (SE) prognosis, is mostly related to non-modifiable factors (especially age, etiology), but the specific role of treatment appropriateness (TA) has not been investigated. Methods: In a prospective cohort with incident SE (excluding postanoxic), TA was defined, after recent European recommendations, in terms of drug dosage (630% deviation) and sequence. Outcome at hospital discharge was categorized into mortality, new handicap, or return to baseline. Results: Among 225 adults, treatment was inappropriate in 37%. In univariate analyses, age, etiology, SE severity and comorbidity, but not TA, were significantly related to outcome. Etiology (95% CI 4.3-82.8) and SE severity (95% CI 1.2-2.4) were independent predictors of mortality, and of lack of return to baseline conditions (etiology: 95% CI 3.9-14.0; SE severity: 95% CI 1.4-2.2). Moreover, TA did not improve outcome prediction in the corresponding ROC curves. Conclusions: This large analysis suggests that TA plays a negligible prognostic role in SE, probably reflecting the outstanding importance of the biological background. Awaiting treatment trials in SE, it appears questionable to apply further resources in refining treatment protocols involving existing compounds; rather, new therapeutic approaches should be identified and tested.
Resumo:
The neuronal monocarboxylate transporter, MCT2, is not only an energy substrate carrier but it is also purported to be a binding partner for the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR2 subunit. To unravel a putative role of MCT2 in the regulation of GluR2 subcellular distribution, Neuro2A cells and primary cultures of mouse cortical neurons were co-transfected with plasmids containing sequences to express the fluorescent proteins mStrawberry (mStb)-fused MCT2 and Venus-fused GluR2. Subsequently, their subcellular distribution was visualized by fluorescence microscopy. GluR2 was led to form perinuclear and dendritic clusters together with MCT2 when co-transfected in Neuro2A cells or in neurons, following the original distribution of MCT2. MCT2 co-transfection had no effect on the intracellular distribution of several other post-synaptic proteins, although it partially affected the intracellular distribution of GluR1 similarly to GluR2. Both cell surface and total protein expression levels of GluR2 were significantly reduced by co-expression with MCT2. Finally, partial perinuclear and dendritic co-localization between MCT2 and Rab8, a member of the small GTPase family involved in membrane trafficking of AMPA receptors, was also observed in co-transfected neurons. These results suggest that MCT2 could influence AMPA receptor trafficking within neurons by modulating GluR2 sorting between different subcellular compartments.
Resumo:
BACKGROUND: Poor medication adherence is a frequent cause of treatment failure but is difficult to diagnose. In this study we have evaluated the impact of measuring adherence to cinacalcet-HCl and phosphate binders in dialysis patients with uncontrolled secondary hyperparathyroidism. METHODS: 7 chronic dialysis patients with iPTH-levels >= 300 pg/ml despite treatment with >= 60 mg cinacalcet-HCl were included. Medication adherence was measured using the "Medication Events Monitoring System" during 3 months, followed by another 3-month period without monitoring. The adherence results were monthly discussed with the patients, as well as strategies to improve them. RESULTS: During monitoring, the percentage of prescribed doses taken was higher for cinacalcet-HCl (87.4%) and sevelamer (86.3%) than for calcium acetate (76.1%), as was the taking adherence (81.9% vs. 57.3% vs. 49.1%) but not the percentage of drug holidays (12.3% vs. 4.5% vs. 3.6%). Mean PO4 levels (from 2.24 +/- 0.6 mmol/l to 1.73 +/- 0.41 mmol/l; p = 0.14) and Ca++ x PO4 product (4.73 +/- 1.43 to 3.41 +/- 1.04 mmol2/l2; p = 0.12) improved and iPTH-level improved significantly from 916 +/- 618 pg/ml to 442 +/- 326 pg/ml (p = 0.04), without any change in medication. However, as drug monitoring was interrupted, all laboratory parameters worsened again. CONCLUSIONS: Assessment of drug adherence helped to document episodes of non-compliance and helped to avoid seemingly necessary dose increases.
Resumo:
Aims: Therapeutic Drug Monitoring (TDM) is an established tool to optimize thepharmacotherapy with immunosupressants, antibiotics, antiretroviral agents, anticonvulsantsand psychotropic drugs. The TDM expert group of the Association ofNeuropsychopharmacolgy and Pharmacopsychiatry recommended clinical guidelinesfor TDM of psychotropic drugs in 2004 and in 2011. They allocate 4 levelsof recommendation based on studies reporting plasma concentrations and clinicaloutcomes. To evaluate the additional benefit for drugs without direct evidence forTDM and to verify the recommendation levels of the expert group the authorsbuilt a new rating scale. Methods: This rating scale included 28 items and wasdivided in 5 categories: Efficacy, toxicity, pharmacokinetics, patient characteristicsand cost effectiveness. A literature search was performed for 10 antidepressants,10 antipsychotics, 8 drugs used in the treatment of substance related disordersand lithium, thereafter, a comparison with the assessment of the TDMexpert group was carried out. Results: The antidepressants as well as the antipsychoticsshowed a high and significant correlation with the recommendations inthe consensus guidelines. However, meanderings could be detected for the drugsused in the therapy of substance related disorders, for which TDM is mostly notestablished yet. The result of the antidepressants and antipsychotics permits aclassification of the reachable points; upper 13 - TDM strongly recommended10 to 13 - TDM recommended, 8 to 10 - TDM useful and below 8 - TDMpotentially useful. Conclusion: These results suggest this rating scale is sensitiveto detect the appropriateness of TDM for drug treatment. For those drugs TDM isnot established a more objective estimation is possible, thus the scoring helps tofocus on the most likely drugs to require TDM.
Resumo:
Objectives: The study objective was to derive reference pharmacokinetic curves of antiretroviral drugs (ART) based on available population pharmacokinetic (Pop-PK) studies that can be used to optimize therapeutic drug monitoring guided dosage adjustment.¦Methods: A systematic search of Pop-PK studies of 8 ART in adults was performed in PubMed. To simulate reference PK curves, a summary of the PK parameters was obtained for each drug based on meta-analysis approach. Most models used one-compartment model, thus chosen as reference model. Models using bi-exponential disposition were simplified to one-compartment, since the first distribution phase was rapid and not determinant for the description of the terminal elimination phase, mostly relevant for this project. Different absorption were standardized for first-order absorption processes.¦Apparent clearance (CL), apparent volume of distribution of the terminal phase (Vz) and absorption rate constant (ka) and inter-individual variability were pooled into summary mean value, weighted by number of plasma levels; intra-individual variability was weighted by number of individuals in each study.¦Simulations based on summary PK parameters served to construct concentration PK percentiles (NONMEM®).¦Concordance between individual and summary parameters was assessed graphically using Forest-plots. To test robustness, difference in simulated curves based on published and summary parameters was calculated using efavirenz as probe drug.¦Results: CL was readily accessible from all studies. For studies with one-compartment, Vz was central volume of distribution; for two-compartment, Vz was CL/λz. ka was directly used or derived based on the mean absorption time (MAT) for more complicated absorption models, assuming MAT=1/ka.¦The value of CL for each drug was in excellent agreement throughout all Pop-PK models, suggesting that minimal concentration derived from summary models was adequately characterized. The comparison of the concentration vs. time profile for efavirenz between published and summary PK parameters revealed not more than 20% difference. Although our approach appears adequate for estimation of elimination phase, the simplification of absorption phase might lead to small bias shortly after drug intake.¦Conclusions: Simulated reference percentile curves based on such an approach represent a useful tool for interpretating drug concentrations. This Pop-PK meta-analysis approach should be further validated and could be extended to elaborate more sophisticated computerized tool for the Bayesian TDM of ART.
Resumo:
Recently, it has been proposed that drug permeation is essentially carrier-mediated only and that passive lipoidal diffusion is negligible. This opposes the prevailing hypothesis of drug permeation through biological membranes, which integrates the contribution of multiple permeation mechanisms, including both carrier-mediated and passive lipoidal diffusion, depending on the compound's properties, membrane properties, and solution properties. The prevailing hypothesis of drug permeation continues to be successful for application and prediction in drug development. Proponents of the carrier-mediated only concept argue against passive lipoidal diffusion. However, the arguments are not supported by broad pharmaceutics literature. The carrier-mediated only concept lacks substantial supporting evidence and successful applications in drug development.
Resumo:
In this chapter we summarize some aspects of the structure-functional relationship of the alpha 1a and alpha 1b-adrenergic receptor subtypes related to the receptor activation process as well as the effect of different alpha-blockers on the constitutive activity of the receptor. Molecular modeling of the alpha 1a and alpha 1b-adrenergic receptor subtypes and computational simulation of receptor dynamics were useful to interpret the experimental findings derived from site directed mutagenesis studies.