149 resultados para Dimension Theory
Resumo:
Schizophrenia is postulated to be the prototypical dysconnection disorder, in which hallucinations are the core symptom. Due to high heterogeneity in methodology across studies and the clinical phenotype, it remains unclear whether the structural brain dysconnection is global or focal and if clinical symptoms result from this dysconnection. In the present work, we attempt to clarify this issue by studying a population considered as a homogeneous genetic sub-type of schizophrenia, namely the 22q11.2 deletion syndrome (22q11.2DS). Cerebral MRIs were acquired for 46 patients and 48 age and gender matched controls (aged 6-26, respectively mean age = 15.20 ± 4.53 and 15.28 ± 4.35 years old). Using the Connectome mapper pipeline (connectomics.org) that combines structural and diffusion MRI, we created a whole brain network for each individual. Graph theory was used to quantify the global and local properties of the brain network organization for each participant. A global degree loss of 6% was found in patients' networks along with an increased Characteristic Path Length. After identifying and comparing hubs, a significant loss of degree in patients' hubs was found in 58% of the hubs. Based on Allen's brain network model for hallucinations, we explored the association between local efficiency and symptom severity. Negative correlations were found in the Broca's area (p < 0.004), the Wernicke area (p < 0.023) and a positive correlation was found in the dorsolateral prefrontal cortex (DLPFC) (p < 0.014). In line with the dysconnection findings in schizophrenia, our results provide preliminary evidence for a targeted alteration in the brain network hubs' organization in individuals with a genetic risk for schizophrenia. The study of specific disorganization in language, speech and thought regulation networks sharing similar network properties may help to understand their role in the hallucination mechanism.
Resumo:
The book presents the state of the art in machine learning algorithms (artificial neural networks of different architectures, support vector machines, etc.) as applied to the classification and mapping of spatially distributed environmental data. Basic geostatistical algorithms are presented as well. New trends in machine learning and their application to spatial data are given, and real case studies based on environmental and pollution data are carried out. The book provides a CD-ROM with the Machine Learning Office software, including sample sets of data, that will allow both students and researchers to put the concepts rapidly to practice.
Resumo:
Defining the limits of an urban agglomeration is essential both for fundamental and applied studies in quantitative and theoretical geography. A simple and consistent way for defining such urban clusters is important for performing different statistical analysis and comparisons. Traditionally, agglomerations are defined using a rather qualitative approach based on various statistical measures. This definition varies generally from one country to another, and the data taken into account are different. In this paper, we explore the use of the City Clustering Algorithm (CCA) for the agglomeration definition in Switzerland. This algorithm provides a systemic and easy way to define an urban area based only on population data. The CCA allows the specification of the spatial resolution for defining the urban clusters. The results from different resolutions are compared and analysed, and the effect of filtering the data investigated. Different scales and parameters allow highlighting different phenomena. The study of Zipf's law using the visual rank-size rule shows that it is valid only for some specific urban clusters, inside a narrow range of the spatial resolution of the CCA. The scale where emergence of one main cluster occurs can also be found in the analysis using Zipf's law. The study of the urban clusters at different scales using the lacunarity measure - a complementary measure to the fractal dimension - allows to highlight the change of scale at a given range.
Resumo:
After years of reciprocal lack of interest, if not opposition, neuroscience and psychoanalysis are poised for a renewed dialogue. This article discusses some aspects of the Freudian metapsychology and its link with specific biological mechanisms. It highlights in particular how the physiological concept of homeostasis resonates with certain fundamental concepts of psychoanalysis. Similarly, the authors underline how the Freud and Damasio theories of brain functioning display remarkable complementarities, especially through their common reference to Meynert and James. Furthermore, the Freudian theory of drives is discussed in the light of current neurobiological evidences of neural plasticity and trace formation and of their relationships with the processes of homeostasis. The ensuing dynamics between traces and homeostasis opens novel avenues to consider inner life in reference to the establishment of fantasies unique to each subject. The lack of determinism, within a context of determinism, implied by plasticity and reconsolidation participates in the emergence of singularity, the creation of uniqueness and the unpredictable future of the subject. There is a gap in determinism inherent to biology itself. Uniqueness and discontinuity: this should today be the focus of the questions raised in neuroscience. Neuroscience needs to establish the new bases of a "discontinuous" biology. Psychoanalysis can offer to neuroscience the possibility to think of discontinuity. Neuroscience and psychoanalysis meet thus in an unexpected way with regard to discontinuity and this is a new point of convergence between them.
Resumo:
The article is concerned with the formal definition of a largely unnoticed factor in narrative structure. Based on the assumptions that (1) the semantics of a written text depend, among other factors, directly on its visual alignment in space, that (2) the formal structure of a text has to meet that of its spatial presentation and that (3) these assumptions hold true also for narrative texts (which, however, in modern times typically conceal their spatial dimensions by a low-key linear layout), it is argued that, how ever low-key, the expected material shape of a given narrative determines the configuration of its plot by its author. The ,implied book' thus denotes an author's historically assumable, not necessarily conscious idea of how his text, which is still in the process of creation, will be dimensionally presented and under these circumstances visually absorbed. Assuming that an author's knowledge of this later (potentially) substantiated material form influences the composition, the implied book is to be understood as a text-genetically determined, structuring moment of the text. Historically reconstructed, it thus serves the methodical analysis of structural characteristics of a completed text.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
The theory of language has occupied a special place in the history of Indian thought. Indian philosophers give particular attention to the analysis of the cognition obtained from language, known under the generic name of śābdabodha. This term is used to denote, among other things, the cognition episode of the hearer, the content of which is described in the form of a paraphrase of a sentence represented as a hierarchical structure. Philosophers submit the meaning of the component items of a sentence and their relationship to a thorough examination, and represent the content of the resulting cognition as a paraphrase centred on a meaning element, that is taken as principal qualificand (mukhyaviśesya) which is qualified by the other meaning elements. This analysis is the object of continuous debate over a period of more than a thousand years between the philosophers of the schools of Mimāmsā, Nyāya (mainly in its Navya form) and Vyākarana. While these philosophers are in complete agreement on the idea that the cognition of sentence meaning has a hierarchical structure and share the concept of a single principal qualificand (qualified by other meaning elements), they strongly disagree on the question which meaning element has this role and by which morphological item it is expressed. This disagreement is the central point of their debate and gives rise to competing versions of this theory. The Mïmāmsakas argue that the principal qualificand is what they call bhāvanā ̒bringing into being̒, ̒efficient force̒ or ̒productive operation̒, expressed by the verbal affix, and distinct from the specific procedures signified by the verbal root; the Naiyāyikas generally take it to be the meaning of the word with the first case ending, while the Vaiyākaranas take it to be the operation expressed by the verbal root. All the participants rely on the Pāninian grammar, insofar as the Mimāmsakas and Naiyāyikas do not compose a new grammar of Sanskrit, but use different interpretive strategies in order to justify their views, that are often in overt contradiction with the interpretation of the Pāninian rules accepted by the Vaiyākaranas. In each of the three positions, weakness in one area is compensated by strength in another, and the cumulative force of the total argumentation shows that no position can be declared as correct or overall superior to the others. This book is an attempt to understand this debate, and to show that, to make full sense of the irreconcilable positions of the three schools, one must go beyond linguistic factors and consider the very beginnings of each school's concern with the issue under scrutiny. The texts, and particularly the late texts of each school present very complex versions of the theory, yet the key to understanding why these positions remain irreconcilable seems to lie elsewhere, this in spite of extensive argumentation involving a great deal of linguistic and logical technicalities. Historically, this theory arises in Mimāmsā (with Sabara and Kumārila), then in Nyāya (with Udayana), in a doctrinal and theological context, as a byproduct of the debate over Vedic authority. The Navya-Vaiyākaranas enter this debate last (with Bhattoji Dïksita and Kaunda Bhatta), with the declared aim of refuting the arguments of the Mïmāmsakas and Naiyāyikas by bringing to light the shortcomings in their understanding of Pāninian grammar. The central argument has focused on the capacity of the initial contexts, with the network of issues to which the principal qualificand theory is connected, to render intelligible the presuppositions and aims behind the complex linguistic justification of the classical and late stages of this debate. Reading the debate in this light not only reveals the rationality and internal coherence of each position beyond the linguistic arguments, but makes it possible to understand why the thinkers of the three schools have continued to hold on to three mutually exclusive positions. They are defending not only their version of the principal qualificand theory, but (though not openly acknowledged) the entire network of arguments, linguistic and/or extra-linguistic, to which this theory is connected, as well as the presuppositions and aims underlying these arguments.
Resumo:
Much of the analytical modeling of morphogen profiles is based on simplistic scenarios, where the source is abstracted to be point-like and fixed in time, and where only the steady state solution of the morphogen gradient in one dimension is considered. Here we develop a general formalism allowing to model diffusive gradient formation from an arbitrary source. This mathematical framework, based on the Green's function method, applies to various diffusion problems. In this paper, we illustrate our theory with the explicit example of the Bicoid gradient establishment in Drosophila embryos. The gradient formation arises by protein translation from a mRNA distribution followed by morphogen diffusion with linear degradation. We investigate quantitatively the influence of spatial extension and time evolution of the source on the morphogen profile. For different biologically meaningful cases, we obtain explicit analytical expressions for both the steady state and time-dependent 1D problems. We show that extended sources, whether of finite size or normally distributed, give rise to more realistic gradients compared to a single point-source at the origin. Furthermore, the steady state solutions are fully compatible with a decreasing exponential behavior of the profile. We also consider the case of a dynamic source (e.g. bicoid mRNA diffusion) for which a protein profile similar to the ones obtained from static sources can be achieved.
Resumo:
Cette thèse explore le rôle de la normalisation technique dans les délocalisations de services en Inde et au Maroc. La recherche appréhende le phénomène en opposant explicitement ou implicitement deux modèles. Un modèle serviciel dans lequel les activités de services sont difficilement délocalisables parce que non-mesurables ; un modèle industriel qui articule des activités de services mesurables par les normes techniques et susceptibles d'être délocalisés dans les pays du Sud à bas salaires. Notre thèse s'interroge sur la manière dont les relations Nord-Sud peuvent s'appréhender au sein de cette dichotomie et propose une réflexion épistémologique sur les représentations culturelles induites au sein de ce cadrage. A partir d'une perspective qui combine les apports de l'économie politique culturelle, la sociologie économique et les études postcoloniales au sein de l'économie politique internationale, elle mobilise trois catégories (la normalisation technique, l'imaginaire économique, la qualité). Ces catégories nous permettent de suggérer la centralité des enjeux de pouvoirs dans la définition de ce que sont les activités de services. L'analyse empirique suggère que les délocalisations de services au Maroc et en Inde expriment des réalités plus poreuses et plus dynamiques que la dichotomie entre modèle serviciel et modèle industriel laisse entendre. Elle met en évidence la capacité d'agir des acteurs des pays du Sud et suggère que les normes techniques ont une fonction politique à travers leurs fonctions de mesure. Abstract This thesis explores the role of technical standards in offshore outsourcing in India and Morocco. Current research captures the phenomenon while opposing explicitly or implicitly two models of production. A service-based model in which service activities are difficult to relocate because they are non-measurable; an industrial model that articulates service activities measured with technical standards and that may be outsourced to developing countries with low wages. Our thesis questions how North-South relations can be grasped within this dichotomy and offers an epistemologica! reflection on cultural representations induced within this framework. From a perspective that combines the contributions of cultural political economy, economic sociology and postcolonial studies in international political economy, it mobilizes three categories (technical standardization, the economic imaginary and quality). These categories allow us to suggest the centrality of power issues in the definition of service activities. The empirical analysis suggests that offshoring of services in Morocco and India express more porous and dynamic realities than the dichotomy suggested between a service model and an industrial model. It highlights the ability of the actors to act in the South and suggests that technical standards have a political function through their measurement functions.