302 resultados para Diffusion magnetic resonance Imaging
Resumo:
BACKGROUND: Cardiovascular magnetic resonance (CMR) is increasingly used in daily clinical practice. However, little is known about its clinical utility such as image quality, safety and impact on patient management. In addition, there is limited information about the potential of CMR to acquire prognostic information. METHODS: The European Cardiovascular Magnetic Resonance Registry (EuroCMR Registry) will consist of two parts: 1) Multicenter registry with consecutive enrolment of patients scanned in all participating European CMR centres using web based online case record forms. 2) Prospective clinical follow up of patients with suspected coronary artery disease (CAD) and hypertrophic cardiomyopathy (HCM) every 12 months after enrolment to assess prognostic data. CONCLUSION: The EuroCMR Registry offers an opportunity to provide information about the clinical utility of routine CMR in a large number of cases and a diverse population. Furthermore it has the potential to gather information about the prognostic value of CMR in specific patient populations.
Resumo:
Three-dimensional imaging for the quantification of myocardial motion is a key step in the evaluation of cardiac disease. A tagged magnetic resonance imaging method that automatically tracks myocardial displacement in three dimensions is presented. Unlike other techniques, this method tracks both in-plane and through-plane motion from a single image plane without affecting the duration of image acquisition. A small z-encoding gradient is subsequently added to the refocusing lobe of the slice-selection gradient pulse in a slice following CSPAMM acquisition. An opposite polarity z-encoding gradient is added to the orthogonal tag direction. The additional z-gradients encode the instantaneous through plane position of the slice. The vertical and horizontal tags are used to resolve in-plane motion, while the added z-gradients is used to resolve through-plane motion. Postprocessing automatically decodes the acquired data and tracks the three-dimensional displacement of every material point within the image plane for each cine frame. Experiments include both a phantom and in vivo human validation. These studies demonstrate that the simultaneous extraction of both in-plane and through-plane displacements and pathlines from tagged images is achievable. This capability should open up new avenues for the automatic quantification of cardiac motion and strain for scientific and clinical purposes.
Resumo:
PURPOSE: To implement and characterize a fluorine-19 ((19)F) magnetic resonance imaging (MRI) technique and to test the hypothesis that the (19)F MRI signal in steady state after intravenous injection of a perfluoro-15-crown-5 ether (PCE) emulsion may be exploited for angiography in a pre-clinical in vivo animal study. MATERIALS AND METHODS: In vitro at 9.4T, the detection limit of the PCE emulsion at a scan time of 10 min/slice was determined, after which the T(1) and T(2) of PCE in venous blood were measured. Permission from the local animal use committee was obtained for all animal experiments. 12 µl/g of PCE emulsion was intravenously injected in 11 mice. Gradient echo (1)H and (19)F images were obtained at identical anatomical levels. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were determined for 33 vessels in both the (19)F and (1)H images, which was followed by vessel tracking to determine the vessel conspicuity for both modalities. RESULTS: In vitro, the detection limit was ∼400 µM, while the (19)F T(1) and T(2) were 1350±40 and 25±2 ms. The (19)F MR angiograms selectively visualized the vasculature (and the liver parenchyma over time) while precisely coregistering with the (1)H images. Due to the lower SNR of (19)F compared to (1)H (17±8 vs. 83±49, p<0.001), the (19)F CNR was also lower at 15±8 vs. 52±35 (p<0.001). Vessel tracking demonstrated a significantly higher vessel sharpness in the (19)F images (66±11 vs. 56±12, p = 0.002). CONCLUSION: (19)F magnetic resonance angiography of intravenously administered perfluorocarbon emulsions is feasible for a selective and exclusive visualization of the vasculature in vivo.
Resumo:
In this work we present a method for the image analysisof Magnetic Resonance Imaging (MRI) of fetuses. Our goalis to segment the brain surface from multiple volumes(axial, coronal and sagittal acquisitions) of a fetus. Tothis end we propose a two-step approach: first, a FiniteGaussian Mixture Model (FGMM) will segment the image into3 classes: brain, non-brain and mixture voxels. Second, aMarkov Random Field scheme will be applied tore-distribute mixture voxels into either brain ornon-brain tissue. Our main contributions are an adaptedenergy computation and an extended neighborhood frommultiple volumes in the MRF step. Preliminary results onfour fetuses of different gestational ages will be shown.
Resumo:
Report of one case of bilateral cryptorchism with non-palpable testes in a 26-year old patient with progressive muscle dystrophy. Physical examination and ultrasound study to detect the testicular location were inconclusive. An analysis is made of data obtained with the NMR study as well as a review of the advantages and contributions from this new technique in the location and characterization of undescended testes.
Resumo:
Sophisticated magnetic resonance tagging techniques provide powerful tools for the non-invasive assessment of the local heartwall motion towards a deeper fundamental understanding of local heart function. For the extraction of motion data from the time series of magnetic resonance tagged images and for the visualization of the local heartwall motion a new image analysis procedure has been developed. New parameters have been derived which allows quantification of the motion patterns and are highly sensitive to any changes in these patterns. The new procedure has been applied for heart motion analysis in healthy volunteers and in patient collectives with different heart diseases. The achieved results are summarized and discussed.
Resumo:
The impact of navigator spatial resolution and navigator evaluation time on image quality in free-breathing navigator-gated 3D coronary magnetic resonance angiography (MRA), including real-time motion correction, was investigated in a moving phantom. Objective image quality parameters signal-to-noise ratio (SNR) and vessel sharpness were compared. It was found that for improved mage quality a short navigator evaluation time is of crucial importance. Navigator spatial resolution showed minimal influence on image quality.
Resumo:
PURPOSE: Atherosclerosis results in a considerable medical and socioeconomic impact on society. We sought to evaluate novel magnetic resonance imaging (MRI) angiography and vessel wall sequences to visualize and quantify different morphologic stages of atherosclerosis in a Watanabe hereditary hyperlipidemic (WHHL) rabbit model. MATERIAL AND METHODS: Aortic 3D steady-state free precession angiography and subrenal aortic 3D black-blood fast spin-echo vessel wall imaging pre- and post-Gadolinium (Gd) was performed in 14 WHHL rabbits (3 normal, 6 high-cholesterol diet, and 5 high-cholesterol diet plus endothelial denudation) on a commercial 1.5 T MR system. Angiographic lumen diameter, vessel wall thickness, signal-/contrast-to-noise analysis, total vessel area, lumen area, and vessel wall area were analyzed semiautomatically. RESULTS: Pre-Gd, both lumen and wall dimensions (total vessel area, lumen area, vessel wall area) of group 2 + 3 were significantly increased when compared with those of group 1 (all P < 0.01). Group 3 animals had significantly thicker vessel walls than groups 1 and 2 (P < 0.01), whereas angiographic lumen diameter was comparable among all groups. Post-Gd, only diseased animals of groups 2 + 3 showed a significant (>100%) signal-to-noise ratio and contrast-to-noise increase. CONCLUSIONS: A combination of novel 3D magnetic resonance angiography and high-resolution 3D vessel wall MRI enabled quantitative characterization of various atherosclerotic stages including positive arterial remodeling and Gd uptake in a WHHL rabbit model using a commercially available 1.5 T MRI system.
Resumo:
BACKGROUND: The goal of this study was to characterize the performance of fluorine-19 ((19)F) cardiac magnetic resonance (CMR) for the specific detection of inflammatory cells in a mouse model of myocarditis. Intravenously administered perfluorocarbons are taken up by infiltrating inflammatory cells and can be detected by (19)F-CMR. (19)F-labeled cells should, therefore, generate an exclusive signal at the inflamed regions within the myocardium. METHODS AND RESULTS: Experimental autoimmune myocarditis was induced in BALB/c mice. After intravenous injection of 2×200 µL of a perfluorocarbon on day 19 and 20 (n=9) after immunization, in vivo (19)F-CMR was performed at the peak of myocardial inflammation (day 21). In 5 additional animals, perfluorocarbon combined with FITC (fluorescein isothiocyanate) was administered for postmortem immunofluorescence and flow-cytometry analyses. Control experiments were performed in 9 animals. In vivo (19)F-CMR detected myocardial inflammation in all experimental autoimmune myocarditis-positive animals. Its resolution was sufficient to identify even small inflammatory foci, that is, at the surface of the right ventricle. Postmortem immunohistochemistry and flow cytometry confirmed the presence of perfluorocarbon in macrophages, dendritic cells, and granulocytes, but not in lymphocytes. The myocardial volume of elevated (19)F signal (rs=0.96; P<0.001), the (19)F signal-to-noise ratio (rs=0.92; P<0.001), and the (19)F signal integral (rs=0.96; P<0.001) at day 21 correlated with the histological myocarditis severity score. CONCLUSIONS: In vivo (19)F-CMR was successfully used to visualize the inflammation specifically and robustly in experimental autoimmune myocarditis, and thus allowed for an unprecedented insight into the involvement of inflammatory cells in the disease process.
Resumo:
PURPOSE: In the present study, the impact of the two different fat suppression techniques was investigated for free breathing 3D spiral coronary magnetic resonance angiography (MRA). As the coronary arteries are embedded in epicardial fat and are adjacent to myocardial tissue, magnetization preparation such as T(2)-preparation and fat suppression is essential for coronary discrimination. MATERIALS AND METHODS: Fat-signal suppression in three-dimensional (3D) thin- slab coronary MRA based on a spiral k-space data acquisition can either be achieved by signal pre-saturation using a spectrally selective inversion recovery pre-pulse or by spectral-spatial excitation. In the present study, the performance of the two different approaches was studied in healthy subjects. RESULTS: No significant objective or subjective difference was found between the two fat suppression approaches. CONCLUSION: Spectral pre-saturation seems preferred for coronary MRA applications due to the ease of implementation and the shorter cardiac acquisition window.
Resumo:
PURPOSE: To compare volume-targeted and whole-heart coronary magnetic resonance angiography (MRA) after the administration of an intravascular contrast agent. MATERIALS AND METHODS: Six healthy adult subjects underwent a navigator-gated and -corrected (NAV) free breathing volume-targeted cardiac-triggered inversion recovery (IR) 3D steady-state free precession (SSFP) coronary MRA sequence (t-CMRA) (spatial resolution = 1 x 1 x 3 mm(3)) and high spatial resolution IR 3D SSFP whole-heart coronary MRA (WH-CMRA) (spatial resolution = 1 x 1 x 2 mm(3)) after the administration of an intravascular contrast agent B-22956. Subjective and objective image quality parameters including maximal visible vessel length, vessel sharpness, and visibility of coronary side branches were evaluated for both t-CMRA and WH-CMRA. RESULTS: No significant differences (P = NS) in image quality were observed between contrast-enhanced t-CMRA and WH-CMRA. However, using an intravascular contrast agent, significantly longer vessel segments were measured on WH-CMRA vs. t-CMRA (right coronary artery [RCA] 13.5 +/- 0.7 cm vs. 12.5 +/- 0.2 cm; P < 0.05; and left circumflex coronary artery [LCX] 11.9 +/- 2.2 cm vs. 6.9 +/- 2.4 cm; P < 0.05). Significantly more side branches (13.3 +/- 1.2 vs. 8.7 +/- 1.2; P < 0.05) were visible for the left anterior descending coronary artery (LAD) on WH-CMRA vs. t-CMRA. Scanning time and navigator efficiency were similar for both techniques (t-CMRA: 6.05 min; 49% vs. WH-CMRA: 5.51 min; 54%, both P = NS). CONCLUSION: Both WH-CMRA and t-CMRA using SSFP are useful techniques for coronary MRA after the injection of an intravascular blood-pool agent. However, the vessel conspicuity for high spatial resolution WH-CMRA is not inferior to t-CMRA, while visible vessel length and the number of visible smaller-diameter vessels and side-branches are improved.
Resumo:
PURPOSE: To evaluate gadocoletic acid (B-22956), a gadolinium-based paramagnetic blood pool agent, for contrast-enhanced coronary magnetic resonance angiography (MRA) in a Phase I clinical trial, and to compare the findings with those obtained using a standard noncontrast T2 preparation sequence. MATERIALS AND METHODS: The left coronary system was imaged in 12 healthy volunteers before B-22956 application and 5 (N = 11) and 45 (N = 7) minutes after application of 0.075 mmol/kg of body weight (BW) of B-22956. Additionally, imaging of the right coronary system was performed 23 minutes after B-22956 application (N = 6). A three-dimensional gradient echo sequence with T2 preparation (precontrast) or inversion recovery (IR) pulse (postcontrast) with real-time navigator correction was used. Assessment of the left and right coronary systems was performed qualitatively (a 4-point visual score for image quality) and quantitatively in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, visible vessel length, maximal luminal diameter, and the number of visible side branches. RESULTS: Significant (P < 0.01) increases in SNR (+42%) and CNR (+86%) were noted five minutes after B-22956 application, compared to precontrast T2 preparation values. A significant increase in CNR (+40%, P < 0.05) was also noted 45 minutes postcontrast. Vessels (left anterior descending artery (LAD), left coronary circumflex (LCx), and right coronary artery (RCA)) were also significantly (P < 0.05) sharper on postcontrast images. Significant increases in vessel length were noted for the LAD (P < 0.05) and LCx and RCA (both P < 0.01), while significantly more side branches were noted for the LAD and RCA (both P < 0.05) when compared to precontrast T2 preparation values. CONCLUSION: The use of the intravascular contrast agent B-22956 substantially improves both objective and subjective parameters of image quality on high-resolution three-dimensional coronary MRA. The increase in SNR, CNR, and vessel sharpness minimizes current limitations of coronary artery visualization with high-resolution coronary MRA.
Resumo:
Magnetic resonance imaging (MRI) and spectroscopy (MRS) allow establishing theanatomical evolution and neurochemical profiles of ischemic lesions. However onlylimited MRS studies have been reported to-date in mice due to the challenges ofMRS in small organs. The aim of the current work was to study the neurochemicaland imaging sequelae of ischemic stroke in a mouse model in a horizontal bore14.1 Tesla system.ICR-CD1 mice were subjected to 30 minute transient middle cerebral artery occlusion.The extent of the lesion was determined by MRI. The neurochemical profileconsisting of the concentrations of 22 metabolites was measured longitudinallyfollowing the recovery from ischemia at 3, 8 and 24h in the striatum.Our model produced very reproducible striatal lesions which began to appear onT2-weighted images 8h after ischemia. At 24h, they were well established andtheir size correlated with lesions measured by histology. Profound changes couldbe observed in the neurochemical profiles of the core of the striatal lesions as earlyas 3h post-ischemia, in particular, we observed elevated lactate levels, decreases inthe putative neuronal marker N-acetyl-aspartate and in glutamate, and a transienttwo-fold glutamine increase, likely linked to excitotoxic release of glutamate andconversion to glutamine. With further ischemia evolution, other changes appearedat later time-points, mainly decreases of metabolites, consistent with disruption ofcellular function. It is interesting to note that glutamine tended to return to basallevels at 24h.We conclude that early changes in markers of energy metabolism, glutamate excitotoxicityand neuronal viability can be detected with high precision non-invasively inmice following stroke. Such investigations should lead to a better understanding andinsight into the sequential early changes in the brain parenchyma after ischemia,which could be used e.g. for identifying new targets for neuroprotection.
Resumo:
BACKGROUND: Recent data suggest that beta-blockers can be beneficial in subgroups of patients with chronic heart failure (CHF). For metoprolol and carvedilol, an increase in ejection fraction has been shown and favorable effects on the myocardial remodeling process have been reported in some studies. We examined the effects of bisoprolol fumarate on exercise capacity and left ventricular volume with magnetic resonance imaging (MRI) and applied a novel high-resolution MRI tagging technique to determine myocardial rotation and relaxation velocity. METHODS: Twenty-eight patients (mean age, 57 +/- 11 years; mean ejection fraction, 26 +/- 6%) were randomized to bisoprolol fumarate (n = 13) or to placebo therapy (n = 15). The dosage of the drugs was titrated to match that of the the Cardiac Insufficiency Bisoprolol Study protocol. Hemodynamic and gas exchange responses to exercise, MRI measurements of left ventricular end-systolic and end-diastolic volumes and ejection fraction, and left ventricular rotation and relaxation velocities were measured before the administration of the drug and 6 and 12 months later. RESULTS: After 1 year, heart rate was reduced in the bisoprolol fumarate group both at rest (81 +/- 12 before therapy versus 61 +/- 11 after therapy; P <.01) and peak exercise (144 +/- 20 before therapy versus 127 +/- 17 after therapy; P <.01), which indicated a reduction in sympathetic drive. No differences were observed in heart rate responses in the placebo group. No differences were observed within or between groups in peak oxygen uptake, although work rate achieved was higher (117.9 +/- 36 watts versus 146.1 +/- 33 watts; P <.05) and exercise time tended to be higher (9.1 +/- 1.7 minutes versus 11.4 +/- 2.8 minutes; P =.06) in the bisoprolol fumarate group. A trend for a reduction in left ventricular end-diastolic volume (-54 mL) and left ventricular end-systolic volume (-62 mL) in the bisoprolol fumarate group occurred after 1 year. Ejection fraction was higher in the bisoprolol fumarate group (25.0 +/- 7 versus 36.2 +/- 9%; P <.05), and the placebo group remained unchanged. Most changes in volume and ejection fraction occurred during the latter 6 months of treatment. With myocardial tagging, insignificant reductions in left ventricular rotation velocity were observed in both groups, whereas relaxation velocity was reduced only after bisoprolol fumarate therapy (by 39%; P <.05). CONCLUSION: One year of bisoprolol fumarate therapy resulted in an improvement in exercise capacity, showed trends for reductions in end-diastolic and end-systolic volumes, increased ejection fraction, and significantly reduced relaxation velocity. Although these results generally confirm the beneficial effects of beta-blockade in patients with chronic heart failure, they show differential effects on systolic and diastolic function.