119 resultados para DNA nanostructures dendrimers RNA therapies drug delivery microglia microRNA DNAzymes self-assembly
Resumo:
Health assessment and medical surveillance of workers exposed to combustion nanoparticles are challenging. The aim was to evaluate the feasibility of using exhaled breath condensate (EBC) from healthy volunteers for (1) assessing the lung deposited dose of combustion nanoparticles and (2) determining the resulting oxidative stress by measuring hydrogen peroxide (H2O2) and malondialdehyde (MDA). Methods: Fifteen healthy nonsmoker volunteers were exposed to three different levels of sidestream cigarette smoke under controlled conditions. EBC was repeatedly collected before, during, and 1 and 2 hr after exposure. Exposure variables were measured by direct reading instruments and by active sampling. The different EBC samples were analyzed for particle number concentration (light-scattering-based method) and for selected compounds considered oxidative stress markers. Results: Subjects were exposed to an average airborne concentration up to 4.3×10(5) particles/cm(3) (average geometric size ∼60-80 nm). Up to 10×10(8) particles/mL could be measured in the collected EBC with a broad size distribution (50(th) percentile ∼160 nm), but these biological concentrations were not related to the exposure level of cigarette smoke particles. Although H2O2 and MDA concentrations in EBC increased during exposure, only H2O2 showed a transient normalization 1 hr after exposure and increased afterward. In contrast, MDA levels stayed elevated during the 2 hr post exposure. Conclusions: The use of diffusion light scattering for particle counting proved to be sufficiently sensitive to detect objects in EBC, but lacked the specificity for carbonaceous tobacco smoke particles. Our results suggest two phases of oxidation markers in EBC: first, the initial deposition of particles and gases in the lung lining liquid, and later the start of oxidative stress with associated cell membrane damage. Future studies should extend the follow-up time and should remove gases or particles from the air to allow differentiation between the different sources of H2O2 and MDA.
Resumo:
Pioneer work on iontophoresis undertaken by David Maurice during the 1970s and 1980s laid the initial groundwork for its potential implementation as a promising ocular therapeutic modality. A better understanding of tissue interactions within the eye during electric current application, along with better designs of drug delivery devices have enabled us to pursue David Maurice's original ideas and take them from the bench to the bed side. In the present study we demonstrate the potential application of an iontophoresis device (Eyegate, Optis, France) for the treatment of certain human eye diseases. Seventeen patients received a penetrating keratoplasty (PKP) at various intervals before presentation with active graft rejection in our clinic and were treated using this iontophoresis device. Methylprednisolone sodium succinate (MP) 62.5 mg/ml was infused within the Eyegate ocular probe container and an electrical current of 1.5 mA was delivered for 4 min with the negative pole connected to the ocular probe. Patients were treated on an ambulatory basis and received a standard course of three iontophoresis applications given once a day over 3 consecutive days. After treatment, 15 of the 17 treated eyes (88%) demonstrated a complete reversal of the rejection processes. In two eyes, only a partial and temporary improvement was observed. The mean best corrected visual acuity of all 17 patients during the last follow up visit was 0.37 +/- 0.2 compared to 0.06 +/- 0.05 before initiation of the iontophoresis treatment. The mean follow-up time was 13.7 months with a range of 5-29 months for the 17 patients. No significant side-effects associated with the iontophoresis treatment were observed. Thus, for the management of active corneal graft rejection, iontophoresis of MP can be an alternative to very frequent instillations of eye drops, or to pulsed intravenous therapy of corticosteroids.
Resumo:
Agricultural practices, such as spreading liquid manure or the utilisation of land as animal pastures, can result in faecal contamination of water resources. Rhodococcus coprophilus is used in microbial source tracking to indicate animal faecal contamination in water. Methods previously described for detecting of R. coprophilus in water were neither sensitive nor specific. Therefore, the aim of this study was to design and validate a new quantitative polymerase chain reaction (qPCR) to improve the detection of R. coprophilus in water. The new PCR assay was based on the R. coprophilus 16S rRNA gene. The validation showed that the new approach was specific and sensitive for deoxyribunucleic acid from target host species. Compared with other PCR assays tested in this study, the detection limit of the new qPCR was between 1 and 3 log lower. The method, including a filtration step, was further validated and successfully used in a field investigation in Switzerland. Our work demonstrated that the new detection method is sensitive and robust to detect R. coprophilus in surface and spring water. Compared with PCR assays that are available in the literature or to the culture-dependent method, the new molecular approach improves the detection of R. coprophilus.
Resumo:
The circadian timing system controls cell cycle, apoptosis, drug bioactivation, and transport and detoxification mechanisms in healthy tissues. As a consequence, the tolerability of cancer chemotherapy varies up to several folds as a function of circadian timing of drug administration in experimental models. Best antitumor efficacy of single-agent or combination chemotherapy usually corresponds to the delivery of anticancer drugs near their respective times of best tolerability. Mathematical models reveal that such coincidence between chronotolerance and chronoefficacy is best explained by differences in the circadian and cell cycle dynamics of host and cancer cells, especially with regard circadian entrainment and cell cycle variability. In the clinic, a large improvement in tolerability was shown in international randomized trials where cancer patients received the same sinusoidal chronotherapy schedule over 24h as compared to constant-rate infusion or wrongly timed chronotherapy. However, sex, genetic background, and lifestyle were found to influence optimal chronotherapy scheduling. These findings support systems biology approaches to cancer chronotherapeutics. They involve the systematic experimental mapping and modeling of chronopharmacology pathways in synchronized cell cultures and their adjustment to mouse models of both sexes and distinct genetic background, as recently shown for irinotecan. Model-based personalized circadian drug delivery aims at jointly improving tolerability and efficacy of anticancer drugs based on the circadian timing system of individual patients, using dedicated circadian biomarker and drug delivery technologies.
Resumo:
We have explored the threshold of tolerance of three unrelated cell types to treatments with potential cytoprotective peptides bound to Tat(48-57) and Antp(43-58) cell-permeable peptide carriers. Both Tat(48-57) and Antp(43-58) are well known for their good efficacy at crossing membranes of different cell types, their overall low toxicity, and their absence of leakage once internalised. Here, we show that concentrations of up to 100 microM of Tat(48-57) were essentially harmless in all cells tested, whereas Antp(43-58) was significantly more toxic. Moreover, all peptides bound to Tat(48-57) and Antp(43-58) triggered significant and length-dependent cytotoxicity when used at concentrations above 10 microM in all but one cell types (208F rat fibroblasts), irrespective of the sequence of the cargo. Absence of cytotoxicity in 208F fibroblasts correlated with poor intracellular peptide uptake, as monitored by confocal laser scanning fluorescence microscopy. Our data further suggest that the onset of cytotoxicity correlates with the activation of two intracellular stress signalling pathways, namely those involving JNK, and to a lesser extent p38 mitogen-activated protein kinases. These responses are of particular concern for cells that are especially sensitive to the activation of stress kinases. Collectively, these results indicate that in order to avoid unwanted and unspecific cytotoxicity, effector molecules bound to Tat(48-57) should be designed with the shortest possible sequence and the highest possible affinity for their binding partners or targets, so that concentrations below 10 microM can be successfully applied to cells without harm. Considering that cytotoxicity associated to Tat(48-57)- and Antp(43-58) bound peptide conjugates was not restricted to a particular type of cells, our data provide a general framework for the design of cell-penetrating peptides that may apply to broader uses of intracellular peptide and drug delivery.
Resumo:
PURPOSE: The aim of this study was to characterize oligonucleotide-polyethylenimine (ODN/PEI) complex preparation for potential transfection of retinal cells in vitro and in vivo. METHODS: The effect of medium preparation [HEPES-buffered saline (HBS), water] on particle size and morphology was evaluated. Cultured Lewis rat retinal Müller glial (RMG) cells were transfected using fluorescein isothiocyanate (FITC)-ODN/PEI complexes specifically directed at transforming growth factor beta (TGFbeta)-2. Efficacy of transfection was evaluated using confocal microscopy, and regulation of gene expression was assayed using quantitative real-time RT-PCR and ELISA assay. One, 24, and 72 h after injection of FITC-ODN/PEI complexes into the vitreous of rat eyes, their distribution was analyzed on eye sections. RESULTS: Complexes prepared in HBS were smaller than complexes prepared in pure water and presented a core-shell structure. These particles showed a high cellular internalization efficacy, along with a significant and specific down-regulation of TGFbeta-2 expression and production in RMG cells, correlating with specific inhibition of cell growth at 72 h. In vivo, complexes efficiently transfect retinal cells and follow a transretinal migration at 24 h. After 72 h, ODN seems to preferentially target RMG cells without inducing any detectable toxicity. CONCLUSIONS: Specific down-regulation of TGFbeta-2 expression using ODN/PEI complexes may have potential interest for the treatment of retinal diseases associated with glial proliferation.
Resumo:
Non-viral vectors for potential gene replacement and therapy have been developed in order to overcome the drawbacks of viral vectors. The diversity of non-viral vectors allows for a wide range of various products, flexibility of application, ease of use, low-cost of production and enhanced "genomic" safety. Using non-viral strategies, oligonucleotides (ODNs) can be delivered naked (less efficient) or entrapped in cationic lipids, polymers or peptides forming slow release delivery systems, which can be adapted according to the organ targeted and the therapy purposes. Tissue and cell internalization can be further enhanced by changing by physical or chemical means. Moreover, a specific vector can be selected according to disease course and intensity of manifestations fulfilling specific requirements such as the duration of drug release and its level along with cells and tissues specific targeting. From accumulating knowledge and experience, it appears that combination of several non-viral techniques may increase the efficacy and ensure the safety of these evolving and interesting gene therapy strategies.
Resumo:
BACKGROUND: The GENCODE consortium was formed to identify and map all protein-coding genes within the ENCODE regions. This was achieved by a combination of initial manual annotation by the HAVANA team, experimental validation by the GENCODE consortium and a refinement of the annotation based on these experimental results. RESULTS: The GENCODE gene features are divided into eight different categories of which only the first two (known and novel coding sequence) are confidently predicted to be protein-coding genes. 5' rapid amplification of cDNA ends (RACE) and RT-PCR were used to experimentally verify the initial annotation. Of the 420 coding loci tested, 229 RACE products have been sequenced. They supported 5' extensions of 30 loci and new splice variants in 50 loci. In addition, 46 loci without evidence for a coding sequence were validated, consisting of 31 novel and 15 putative transcripts. We assessed the comprehensiveness of the GENCODE annotation by attempting to validate all the predicted exon boundaries outside the GENCODE annotation. Out of 1,215 tested in a subset of the ENCODE regions, 14 novel exon pairs were validated, only two of them in intergenic regions. CONCLUSION: In total, 487 loci, of which 434 are coding, have been annotated as part of the GENCODE reference set available from the UCSC browser. Comparison of GENCODE annotation with RefSeq and ENSEMBL show only 40% of GENCODE exons are contained within the two sets, which is a reflection of the high number of alternative splice forms with unique exons annotated. Over 50% of coding loci have been experimentally verified by 5' RACE for EGASP and the GENCODE collaboration is continuing to refine its annotation of 1% human genome with the aid of experimental validation.
Resumo:
Cytokines are key instigators and regulators of immune responses and therefore hold great potential as targets for new therapeutic strategies. However, the selection of which cytokines to target, and in particular the identification of which cytokines regulate the rate-limiting steps of disease pathways, is crucial to the success of such strategies. Moreover, balancing the need for ablating pathological inflammatory responses and simultaneously maintaining the ability to control infectious agents is a key consideration. Recent advances in our understanding of cytokine networks, as well as technical progress in blocking cytokines in vivo, are likely to be a source for new drugs that can control chronic inflammatory diseases.
Resumo:
A crucial step in the arenavirus life cycle is the biosynthesis of the viral envelope glycoprotein (GP) responsible for virus attachment and entry. Processing of the GP precursor (GPC) by the cellular proprotein convertase site 1 protease (S1P), also known as subtilisin-kexin-isozyme 1 (SKI-1), is crucial for cell-to-cell propagation of infection and production of infectious virus. Here, we sought to evaluate arenavirus GPC processing by S1P as a target for antiviral therapy using a recently developed peptide-based S1P inhibitor, decanoyl (dec)-RRLL-chloromethylketone (CMK), and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). To control for off-target effects of dec-RRLL-CMK, we employed arenavirus reverse genetics to introduce a furin recognition site into the GPC of LCMV. The rescued mutant virus grew to normal titers, and the processing of its GPC critically depended on cellular furin, but not S1P. Treatment with the S1P inhibitor dec-RRLL-CMK resulted in specific blocking of viral spread and virus production of LCMV. Combination of the protease inhibitor with ribavirin, currently used clinically for treatment of human arenavirus infections, resulted in additive drug effects. In cells deficient in S1P, the furin-dependent LCMV variant established persistent infection, whereas wild-type LCMV underwent extinction without the emergence of S1P-independent escape variants. Together, the potent antiviral activity of an inhibitor of S1P-dependent GPC cleavage, the additive antiviral effect with ribavirin, and the low probability of emergence of S1P-independent viral escape variants make S1P-mediated GPC processing by peptide-derived inhibitors a promising strategy for the development of novel antiarenaviral drugs.
Resumo:
PURPOSE: Drug delivery to treat diseases of the posterior segment of the eye, such as choroidal neovascularization and its complications, is hampered by poor intraocular penetration and rapid elimination of the drug from the eye. The purpose of this study was to investigate the feasibility and tolerance of suprachoroidal injections of poly(ortho ester) (POE), a bioerodible and biocompatible polymer, as a biomaterial potentially useful for development of sustained drug delivery systems. METHODS: After tunnelization of the sclera, different formulations based on POE were injected (100 microL) into the suprachoroidal space of pigmented rabbits and compared with 1% sodium hyaluronate. Follow-up consisted of fundus observations, echography, fluorescein angiography, and histologic analysis over 3 weeks. RESULTS: After injection, POE spread in the suprachoroidal space at the posterior pole. It was well tolerated and progressively disappeared from the site of injection without sequelae. No bleeding or retinal detachment occurred. Echographic pictures showed that the material was present in the suprachoroidal space for 3 weeks. Angiography revealed minor pigment irregularities at the site of injection, but no retinal edema or necrosis. Histology showed that POE was well tolerated in the choroid. CONCLUSIONS: POE suprachoroidal injections, an easy, controllable, and reproducible procedure, were well tolerated in the rabbit eye. POE appears to be a promising biomaterial to deliver drugs focally to the choroid and the retina.
Resumo:
Abstract Background: Aerosol-mediated delivery of nano-based therapeutics to the lung has emerged as a promising alternative for treatment and prevention of lung diseases. Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted significant attention for such applications due to their biocompatibility and magnetic properties. However, information is lacking about the characteristics of nebulized SPIONs for use as a therapeutic aerosol. To address this need, we conducted a physicochemical characterization of nebulized Rienso, a SPION-based formulation for intravenous treatment of anemia. Methods: Four different concentrations of SPION suspensions were nebulized with a one-jet nebulizer. Particle size was measured in suspension by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), and nanoparticle tracking analysis (NTA), and in the aerosol by a scanning mobility particle sizer (SMPS). Results: The average particle size in suspension as measured by TEM, PCS, and NTA was 9±2 nm, 27±7 nm, and 56±10 nm, respectively. The particle size in suspension remained the same before and after the nebulization process. However, after aerosol collection in an impinger, the suspended particle size increased to 159±46 nm as measured by NTA. The aerosol particle concentration increased linearly with increasing suspension concentration, and the aerodynamic diameter remained relatively stable at around 75 nm as measured by SMPS. Conclusions: We demonstrated that the total number and particle size in the aerosol were modulated as a function of the initial concentration in the nebulizer. The data obtained mark the first known independent characterization of nebulized Rienso and, as such, provide critical information on the behavior of Rienso nanoparticles in an aerosol. The data obtained in this study add new knowledge to the existing body of literature on potential applications of SPION suspensions as inhaled aerosol therapeutics.
Resumo:
Glucocorticoids have been used for decades in the treatment of ocular disorders via topical, periocular, and more recently intravitreal routes. However, their exact mechanisms of action on ocular tissues remain imperfectly understood. Fortunately, two recently approved intravitreal sustained-release drug delivery systems have opened new perspectives for these very potent drugs. To date, among other retinal conditions, their label includes diabetic macular edema, for which a long-lasting therapeutic effect has been demonstrated both morphologically and functionally in several randomized clinical trials. The rate of ocular complications of intravitreal sustained-release steroids, mainly cataract formation and intraocular pressure elevation, is higher than with anti-vascular endothelial growth factor agents. Yet, a better understanding of the mechanisms underlying these adverse effects and the search for the minimal efficient dose should help optimize their therapeutic window.
Resumo:
Infection with hepatitis E virus genotype 3 may result in chronic hepatitis in immunocompromised patients. Reduction of immunosuppression or treatment with ribavirin or pegylated interferon-α can result in viral clearance. However, safer and more effective treatment options are needed. Here, we show that sofosbuvir inhibits the replication of hepatitis E virus genotype 3 both in subgenomic replicon systems as well as a full-length infectious clone. Moreover, the combination of sofosbuvir and ribavirin results in an additive antiviral effect. Sofosbuvir may be considered as an add-on therapy to ribavirin for the treatment of chronic hepatitis E in immunocompromised patients.