119 resultados para Animal anesthesia
Resumo:
Converging evidence favors an abnormal susceptibility to oxidative stress in schizophrenia. Decreased levels of glutathione (GSH), the major cellular antioxidant and redox regulator, was observed in cerebrospinal-fluid and prefrontal cortex of patients. Importantly, abnormal GSH synthesis of genetic origin was observed: Two case-control studies showed an association with a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease associated genotypes (35% of patients) correlated with decreased GCLC protein, GCL activity and GSH content. Similar GSH system anomalies were observed in early psychosis patients. Such redox dysregulation combined with environmental stressors at specific developmental stages could underlie structural and functional connectivity anomalies. In pharmacological and knock-out (KO) models, GSH deficit induces anomalies analogous to those reported in patients. (a) morphology: spine density and GABA-parvalbumine immunoreactivity (PV-I) were decreased in anterior cingulate cortex. KO mice showed delayed cortical PV-I at PD10. This effect is exacerbated in mice with increased DA from PD5-10. KO mice exhibit cortical impairment in myelin and perineuronal net known to modulate PV connectivity. (b) physiology: In cultured neurons, NMDA response are depressed by D2 activation. In hippocampus, NMDA-dependent synaptic plasticity is impaired and kainate induced g-oscillations are reduced in parallel to PV-I. (c) cognition: low GSH models show increased sensitivity to stress, hyperactivity, abnormal object recognition, olfactory integration and social behavior. In a clinical study, GSH precursor N-acetyl cysteine (NAC) as add on therapy, improves the negative symptoms and decreases the side effects of antipsychotics. In an auditory oddball paradigm, NAC improves the mismatched negativity, an evoked potential related to pre-attention and to NMDA receptors function. In summary, clinical and experimental evidence converge to demonstrate that a genetically induced dysregulation of GSH synthesis combined with environmental insults in early development represent a major risk factor contributing to the development of schizophrenia
Resumo:
Blood oxygenation level-dependent (BOLD) functional MRI is a widely employed methodology in experimental and clinical neuroscience, although its nature is not fully understood. To gain insights into BOLD mechanisms and take advantage of the new functional methods, it is of interest to investigate prolonged paradigms of activation suitable for long experimental protocols and to observe any long-term modifications induced by these functional challenges. While different types of sustained stimulation paradigm have been explored in human studies, the BOLD response is typically limited to a few minutes in animal models, due to fatigue, anesthesia effects and physiological instability. In the present study, the rat forepaw was electrically stimulated for 2 h, which resulted in a prolonged and localized cortical BOLD response over that period. The stimulation paradigm, including an inter-stimulus interval (ISI) of 10 s, that is 25% of the total time, was applied at constant or variable frequency over 2 h. The steady-state level of the BOLD response was reached after 15-20 min of stimulation and was maintained until the end of the stimulation. On average, no substantial loss in activated volume was observed at the end of the stimulation, but less variability in the fraction of remaining activated volume and higher steady-state BOLD amplitude were observed when stimulation frequency was varied between 2 and 3 Hz every 5 min. We conclude that the combination of ISI and variable stimulus frequency reproducibly results in robust, prolonged and localized BOLD activation. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
Abstract Background: To evaluate the predictability of refraction following immediate sequential bilateral cataract surgery (ISBCS) performed under general anaesthesia. Methods: This is a retrospective review of all ISBCS performed at Kantonsspital Winterthur, Switzerland, between April 2000 and September 2013. The case notes of 250 patients were reviewed. Patients having full refraction reported (110 patients/220 eyes) were included. 210 (95 %) eyes had a straight forward phacoemulsification with posterior chamber intraocular lens implantation, seven eyes had a planned extracapsular cataract extraction (ECCE); three eyes had an intracapsular cataract extraction. Results: Both eyes of 110 patients (64 women, 46 men) with a mean age of 79.0 years, standard deviation (SD) ±11.4 (range 26 to 97 years) were included. Median preoperative best corrected visual acuity (BCVA) was 0.5 LogMAR in the first eye, the interquartile range (IQR) was [0.4, 1.2]; 0.7 LogMAR in the second eye with IQR [0.4, 1.8]. At one month, the median BCVA was 0.2 LogMAR, IQR [0.1, 0.3] in the first eye, median BCVA was 0.1 LogMAR and IQR [0.0, 0.5] in the second eye. There were 3 eyes (3 %) that lost 3 lines or more in BCVA at one month (control vs. pre-operatively). In all three cases, poor visual acuity had been recorded pre-operatively (>1 LogMAR). Achieved refraction was within ±1.0 D of the target in 83 % of eyes. There were only 5 % (n = 6) of cases where if delayed sequential bilateral extraction had been performed could potentially intraocular lens (IOL) choice have been adjusted, in four of these cases, target refraction was within ±1.0 D in the second eye. Conclusions: ISBCS performed under general anaesthesia achieves target refraction in 83 % of eyes after consideration of complications, ocular co-morbidities and systemic restrictions. In the majority of cases where IOL power calculation could be considered, the achieved refraction of the second surgical eye was within ±1.0 D of intended refraction. This undermines the utility of IOL power adjustments in the second surgical eye. Keywords: Cataract, Cataract surgery, Immediate sequential bilateral cataract surgery
Resumo:
Disease-causing variants of a large number of genes trigger inherited retinal degeneration leading to photoreceptor loss. Because cones are essential for daylight and central vision such as reading, mobility, and face recognition, this review focuses on a variety of animal models for cone diseases. The pertinence of using these models to reveal genotype/phenotype correlations and to evaluate new therapeutic strategies is discussed. Interestingly, several large animal models recapitulate human diseases and can serve as a strong base from which to study the biology of disease and to assess the scale-up of new therapies. Examples of innovative approaches will be presented such as lentiviral-based transgenesis in pigs and adeno-associated virus (AAV)-gene transfer into the monkey eye to investigate the neural circuitry plasticity of the visual system. The models reported herein permit the exploration of common mechanisms that exist between different species and the identification and highlighting of pathways that may be specific to primates, including humans.