124 resultados para Air power
Resumo:
The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters.A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed.In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements.The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.
Resumo:
Migration partnerships (MPs) have become a key instrument in global migration governance. In contrast to traditional unilateral approaches, MPs emphasize a more comprehensive and inclusive tackling of migration issues between countries of origin, transit, and destination. Due to this cooperation-oriented concept, most of the existing studies on MPs neglect power questions within partnerships in line with the official discourse, reflecting a broader trend in the international migration governance literature. Others take an instrumentalist view in analysing the power of partnerships or focus on soft power. Illustrated with the examples of the European Mobility Partnerships (EU MPs) and the Swiss Migration Partnerships (CH MPs), we conduct an analysis based on a concept of productive power drawing on post-structural and post-colonial insights. Our main argument is that in contrast to their seemingly consent-oriented and technical character, MPs are sites of intense (discursive) struggles, and (re-)produce meanings, subjects, and resistances. A productive power analysis allows us to move beyond the dichotomy in the literature between coercion and cooperation, as well as between power and resistance more broadly.
Resumo:
When decommissioning a nuclear facility it is important to be able to estimate activity levels of potentially radioactive samples and compare with clearance values defined by regulatory authorities. This paper presents a method of calibrating a clearance box monitor based on practical experimental measurements and Monte Carlo simulations. Adjusting the simulation for experimental data obtained using a simple point source permits the computation of absolute calibration factors for more complex geometries with an accuracy of a bit more than 20%. The uncertainty of the calibration factor can be improved to about 10% when the simulation is used relatively, in direct comparison with a measurement performed in the same geometry but with another nuclide. The simulation can also be used to validate the experimental calibration procedure when the sample is supposed to be homogeneous but the calibration factor is derived from a plate phantom. For more realistic geometries, like a small gravel dumpster, Monte Carlo simulation shows that the calibration factor obtained with a larger homogeneous phantom is correct within about 20%, if sample density is taken as the influencing parameter. Finally, simulation can be used to estimate the effect of a contamination hotspot. The research supporting this paper shows that activity could be largely underestimated in the event of a centrally-located hotspot and overestimated for a peripherally-located hotspot if the sample is assumed to be homogeneously contaminated. This demonstrates the usefulness of being able to complement experimental methods with Monte Carlo simulations in order to estimate calibration factors that cannot be directly measured because of a lack of available material or specific geometries.
Resumo:
Positive selection is widely estimated from protein coding sequence alignments by the nonsynonymous-to-synonymous ratio omega. Increasingly elaborate codon models are used in a likelihood framework for this estimation. Although there is widespread concern about the robustness of the estimation of the omega ratio, more efforts are needed to estimate this robustness, especially in the context of complex models. Here, we focused on the branch-site codon model. We investigated its robustness on a large set of simulated data. First, we investigated the impact of sequence divergence. We found evidence of underestimation of the synonymous substitution rate for values as small as 0.5, with a slight increase in false positives for the branch-site test. When dS increases further, underestimation of dS is worse, but false positives decrease. Interestingly, the detection of true positives follows a similar distribution, with a maximum for intermediary values of dS. Thus, high dS is more of a concern for a loss of power (false negatives) than for false positives of the test. Second, we investigated the impact of GC content. We showed that there is no significant difference of false positives between high GC (up to similar to 80%) and low GC (similar to 30%) genes. Moreover, neither shifts of GC content on a specific branch nor major shifts in GC along the gene sequence generate many false positives. Our results confirm that the branch-site is a very conservative test.
Resumo:
Les deux mosaïques bien connues des thermes de la villa de Münsingen ont été récemment restaurées et sont aujourd'hui exposées dans le parc d'une fabrique de la commune bernoise. C'est l'occasion de faire le point sur les fouilles entreprises autour du secteur de la découverte depuis 1941, confirmant ainsi l'existence d'une façade de villa de plus de 100 m, bordée par une aile saillante ou une annexe renfermant une zone thermale. Le frigidarium en est constitué d'une pièce d'accès à médaillon central avec tête d'Océan et d'une salle de bains à abside décorée de poissons et de dauphins. L'analyse des motifs amène à repérer au moins trois mains à l'oeuvre sur les pavements, reflétant les tendances de la seconde moitié du IIe siècle et du début du IIIe siècle apr. J.-C. Le maître d'atelier, sans doute installé à Avenches, s'est occupé d'Océan, centrant son discours sur son abondante chevelure d'où sortent deux monstres marins et deux dauphins, allégorie de l'Univers et de l'Empire romain.
Resumo:
This chapter describes the profile of the HIA, provides insight into the process and gives an example of how political decisions may be made on behalf of a concerned population through an HIA approach. [Introduction p. 284]
Resumo:
Assessment of image quality for digital x-ray mammography systems used in European screening programs relies mainly on contrast-detail CDMAM phantom scoring and requires the acquisition and analysis of many images in order to reduce variability in threshold detectability. Part II of this study proposes an alternative method based on the detectability index (d') calculated for a non-prewhitened model observer with an eye filter (NPWE). The detectability index was calculated from the normalized noise power spectrum and image contrast, both measured from an image of a 5 cm poly(methyl methacrylate) phantom containing a 0.2 mm thick aluminium square, and the pre-sampling modulation transfer function. This was performed as a function of air kerma at the detector for 11 different digital mammography systems. These calculated d' values were compared against threshold gold thickness (T) results measured with the CDMAM test object and against derived theoretical relationships. A simple relationship was found between T and d', as a function of detector air kerma; a linear relationship was found between d' and contrast-to-noise ratio. The values of threshold thickness used to specify acceptable performance in the European Guidelines for 0.10 and 0.25 mm diameter discs were equivalent to threshold calculated detectability indices of 1.05 and 6.30, respectively. The NPWE method is a validated alternative to CDMAM scoring for use in the image quality specification, quality control and optimization of digital x-ray systems for screening mammography.
Resumo:
OBJECTIVES: To test the validity of a simple, rapid, field-adapted, portable hand-held impedancemeter (HHI) for the estimation of lean body mass (LBM) and percentage body fat (%BF) in African women, and to develop specific predictive equations. DESIGN: Cross-sectional observational study. SETTINGS: Dakar, the capital city of Senegal, West Africa. SUBJECTS: A total sample of 146 women volunteered. Their mean age was of 31.0 y (s.d. 9.1), weight 60.9 kg (s.d. 13.1) and BMI 22.6 kg/m(2) (s.d. 4.5). METHODS: Body composition values estimated by HHI were compared to those measured by whole body densitometry performed by air displacement plethysmography (ADP). The specific density of LBM in black subjects was taken into account for the calculation of %BF from body density. RESULTS: : Estimations from HHI showed a large bias (mean difference) of 5.6 kg LBM (P<10(-4)) and -8.8 %BF (P<10(-4)) and errors (s.d. of the bias) of 2.6 kg LBM and 3.7 %BF. In order to correct for the bias, specific predictive equations were developed. With the HHI result as a single predictor, error values were of 1.9 kg LBM and 3.7 %BF in the prediction group (n=100), and of 2.2 kg LBM and 3.6 %BF in the cross-validation group (n=46). Addition of anthropometrical predictors was not necessary. CONCLUSIONS: The HHI analyser significantly overestimated LBM and underestimated %BF in African women. After correction for the bias, the body compartments could easily be estimated in African women by using the HHI result in an appropriate prediction equation with a good precision. It remains to be seen whether a combination of arm and leg impedancemetry in order to take into account lower limbs would further improve the prediction of body composition in Africans.
Resumo:
A transportable, whole body indirect calorimeter, designed for use in the tropics, is described. The calorimeter was built to study energy expenditure of people having chronically or acutely low levels of food intake, and it will help to determine energy adaptations made by individuals with restricted food intake. The calorimeter comprises two units: a 27 m3 ventilated chamber connected to an office housing control and monitoring equipment. The system also allows the experimenter to assess the rate of energy expenditure by means of a ventilated hood or a baby respiration chamber. The incoming air flow rate is variable and is typically set at approximately 30 l/min. Carbon dioxide production (VCO2) and oxygen consumption (VO2) are continuously monitored by means of differential gas analysers via a computerized data acquisition unit. Gas production/consumption rates are measured with a delay of 80 s, the complete response to step changes in VCO2 or VO2 consumption being calculated over 15 min using the rate of change terms in the gas exchange equations. The total electrical power required for the whole system is 12 kW. The calorimeter has been functioning for nearly 4 years in a rural village of The Gambia during which ambient temperatures have ranged from 16 to 44 degrees C and dewpoints from -8 to 24 degrees C. The performance and accuracy of the calorimeter were tested using 20 per cent CO2 in N2 infusion and butane burning. Agreement between the theoretical and the measured values was found to be 99 per cent for VO2 and 100 per cent for VCO2 with a precision for both gases of +/- 10 ml/min over a 1-h period.
Resumo:
Les collectivités d'enfants, comme les écoles, mettent en contact de nombreuses personnes dans un espace restreint. Cette proximité peut favoriser la transmission croisée de micro-organismes infectieux. Les épidémies de varicelle, conjonctivite virale, rougeole et gastro-entérite, et la transmission de parasites comme les poux sont fréquentes dans les établissements scolaires et affectent les enfants et le personnel encadrant dont les enseignants. Ce risque professionnel est souvent négligé car considéré comme inévitable. À côté des risques infectieux, d'autres risques liés à des micro-organismes environnementaux et à leurs constituants comme les endotoxines peuvent exister. Ainsi, des études ont montré que les concentrations aéroportées de particules à l'intérieur des classes d'école étaient plus élevées qu'à l'extérieur (1) et que leur composition chimique était différente (2). Plusieurs études épidémiologiques ont montré un lien clair entre l'exposition à des particules et différents problèmes de santé notamment des problèmes respiratoires et cardiaques. Cette exposition à des particules en suspension dans l'air peut avoir des effets toxiques sur les cellules épithéliales des voies respiratoires. Deux études récentes menées dans des écoles et portant sur les particules aéroportées sont analysées ci-dessous. La première étude a évalué les effets biologiques in vitro de particules collectées dans des classes d'écoles en Allemagne et la seconde étude a mesuré les concentrations aéroportées de différents indicateurs de la qualité de l'air dont les micro-organismes dans des écoles au Portugal.
Resumo:
PURPOSE: To use measurement by cycling power meters (Pmes) to evaluate the accuracy of commonly used models for estimating uphill cycling power (Pest). Experiments were designed to explore the influence of wind speed and steepness of climb on accuracy of Pest. The authors hypothesized that the random error in Pest would be largely influenced by the windy conditions, the bias would be diminished in steeper climbs, and windy conditions would induce larger bias in Pest. METHODS: Sixteen well-trained cyclists performed 15 uphill-cycling trials (range: length 1.3-6.3 km, slope 4.4-10.7%) in a random order. Trials included different riding position in a group (lead or follow) and different wind speeds. Pmes was quantified using a power meter, and Pest was calculated with a methodology used by journalists reporting on the Tour de France. RESULTS: Overall, the difference between Pmes and Pest was -0.95% (95%CI: -10.4%, +8.5%) for all trials and 0.24% (-6.1%, +6.6%) in conditions without wind (<2 m/s). The relationship between percent slope and the error between Pest and Pmes were considered trivial. CONCLUSIONS: Aerodynamic drag (affected by wind velocity and orientation, frontal area, drafting, and speed) is the most confounding factor. The mean estimated values are close to the power-output values measured by power meters, but the random error is between ±6% and ±10%. Moreover, at the power outputs (>400 W) produced by professional riders, this error is likely to be higher. This observation calls into question the validity of releasing individual values without reporting the range of random errors.