169 resultados para AUTOSOMAL-DOMINANT INHERITANCE
Resumo:
BACKGROUND: The human condition known as Premature Ovarian Failure (POF) is characterized by loss of ovarian function before the age of 40. A majority of POF cases are sporadic, but 10-15% are familial, suggesting a genetic origin of the disease. Although several causal mutations have been identified, the etiology of POF is still unknown for about 90% of the patients.¦METHODOLOGY/PRINCIPAL FINDINGS: We report a genome-wide linkage and homozygosity analysis in one large consanguineous Middle-Eastern POF-affected family presenting an autosomal recessive pattern of inheritance. We identified two regions with a LOD(max) of 3.26 on chromosome 7p21.1-15.3 and 7q21.3-22.2, which are supported as candidate regions by homozygosity mapping. Sequencing of the coding exons and known regulatory sequences of three candidate genes (DLX5, DLX6 and DSS1) included within the largest region did not reveal any causal mutations.¦CONCLUSIONS/SIGNIFICANCE: We detect two novel POF-associated loci on human chromosome 7, opening the way to the identification of new genes involved in the control of ovarian development and function.
Resumo:
Sex-dependent selection often leads to spectacularly different phenotypes in males and females. In species in which sexual dimorphism is not complete, it is unclear which benefits females and males derive from displaying a trait that is typical of the other sex. In barn owls (Tyto alba), females exhibit on average larger black eumelanic spots than males but members of the two sexes display this trait in the same range of possible values. In a 12-year study, we show that selection exerted on spot size directly or on genetically correlated traits strongly favoured females with large spots and weakly favoured males with small spots. Intense directional selection on females caused an increase in spot diameter in the population over the study period. This increase is due to a change in the autosomal genes underlying the expression of eumelanic spots but not of sex-linked genes. Female-like males produced more daughters than sons, while male-like females produced more sons than daughters when mated to a small-spotted male. These sex ratio biases appear adaptive because sons of male-like females and daughters of female-like males had above-average survival. This demonstrates that selection exerted against individuals displaying a trait that is typical of the other sex promoted the evolution of specific life history strategies that enhance their fitness. This may explain why in many organisms sexual dimorphism is often not complete.
Resumo:
Night vision requires signaling from rod photoreceptors to adjacent bipolar cells in the retina. Mutations in the genes NYX and GRM6, expressed in ON bipolar cells, lead to a disruption of the ON bipolar cell response. This dysfunction is present in patients with complete X-linked and autosomal-recessive congenital stationary night blindness (CSNB) and can be assessed by standard full-field electroretinography (ERG), showing severely reduced rod b-wave amplitude and slightly altered cone responses. Although many cases of complete CSNB (cCSNB) are caused by mutations in NYX and GRM6, in approximately 60% of the patients the gene defect remains unknown. Animal models of human diseases are a good source for candidate genes, and we noted that a cCSNB phenotype present in homozygous Appaloosa horses is associated with downregulation of TRPM1. TRPM1, belonging to the family of transient receptor potential channels, is expressed in ON bipolar cells and therefore qualifies as an excellent candidate. Indeed, mutation analysis of 38 patients with CSNB identified ten unrelated cCSNB patients with 14 different mutations in this gene. The mutation spectrum comprises missense, splice-site, deletion, and nonsense mutations. We propose that the cCSNB phenotype in these patients is due to the absence of functional TRPM1 in retinal ON bipolar cells.
Resumo:
Insulin-dependent diabetes mellitus is an autoimmune disease in which pancreatic islet beta cells are destroyed by a combination of immunological and inflammatory mechanisms. In particular, cytokine-induced production of nitric oxide has been shown to correlate with beta cell apoptosis and/or inhibition of insulin secretion. In the present study, we investigated whether the interleukin (IL)-1beta intracellular signal transduction pathway could be blocked by overexpression of dominant negative forms of the IL-1 receptor interacting protein MyD88. We show that overexpression of the Toll domain or the lpr mutant of MyD88 in betaTc-Tet cells decreased nuclear factor kappaB (NF-kappaB) activation upon IL-1beta and IL-1beta/interferon (IFN)-gamma stimulation. Inducible nitric oxide synthase mRNA accumulation and nitrite production, which required the simultaneous presence of IL-1beta and IFN-gamma, were also suppressed by approximately 70%, and these cells were more resistant to cytokine-induced apoptosis as compared with parental cells. The decrease in glucose-stimulated insulin secretion induced by IL-1beta and IFN-gamma was however not prevented. This was because these dysfunctions were induced by IFN-gamma alone, which decreased cellular insulin content and stimulated insulin exocytosis. These results demonstrate that IL-1beta is involved in inducible nitric oxide synthase gene expression and induction of apoptosis in mouse beta cells but does not contribute to impaired glucose-stimulated insulin secretion. Furthermore, our data show that IL-1beta cellular actions can be blocked by expression of MyD88 dominant negative proteins and, finally, that cytokine-induced beta cell secretory dysfunctions are due to the action of IFN-gamma.
Resumo:
Posterior microphthalmos (MCOP) is a rare isolated developmental anomaly of the eye characterized by extreme hyperopia due to short axial length. The population of the Faroe Islands shows a high prevalence of an autosomal-recessive form (arMCOP) of the disease. Based on published linkage data, we refined the position of the disease locus (MCOP6) in an interval of 250 kb in chromosome 2q37.1 in two large Faroese families. We detected three different mutations in PRSS56. Patients of the Faroese families were either homozygous for c.926G>C (p.Trp309Ser) or compound heterozygous for c.926G>C and c.526C>G (p.Arg176Gly), whereas a homozygous 1 bp duplication (c.1066dupC) was identified in five patients with arMCOP from a consanguineous Tunisian family. In one patient with MCOP from the Faroe Islands and in another one from Turkey, no PRSS56 mutation was detected, suggesting nonallelic heterogeneity of the trait. Using RT-PCR, PRSS56 transcripts were detected in samples derived from the human adult retina, cornea, sclera, and optic nerve. The expression of the mouse ortholog could be first detected in the eye at E17 and was maintained into adulthood. The predicted PRSS56 protein is a 603 amino acid long secreted trypsin-like serine peptidase. The c.1066dupC is likely to result in a functional null allele, whereas the two point mutations predict the replacement of evolutionary conserved and functionally important residues. Molecular modeling of the p.Trp309Ser mutant suggests that both the affinity and reactivity of the enzyme toward in vivo protein substrates are likely to be substantially reduced.
Resumo:
We recently reported on the deficiency of carbohydrate sulfotransferase 3 (CHST3; chondroitin-6-sulfotransferase) in six subjects diagnosed with recessive Larsen syndrome or humero-spinal dysostosis [Hermanns et al. (2008); Am J Hum Genet 82:1368-1374]. Since then, we have identified 17 additional families with CHST3 mutations and we report here on a series of 24 patients in 23 families. The diagnostic hypothesis prior to molecular analysis had been: Larsen syndrome (15 families), humero-spinal dysostosis (four cases), chondrodysplasia with multiple dislocations (CDMD "Megarbane type"; two cases), Desbuquois syndrome (one case), and spondylo-epiphyseal dysplasia (one case). In spite of the different diagnostic labels, the clinical features in these patients were similar and included dislocation of the knees and/or hips at birth, clubfoot, elbow joint dysplasia with subluxation and limited extension, short stature, and progressive kyphosis developing in late childhood. The most useful radiographic clues were the changes of the lumbar vertebrae. Twenty-four different CHST3 mutations were identified; 16 patients had homozygous mutations. We conclude that CHST3 deficiency presents at birth with congenital dislocations of knees, hips, and elbows, and is often diagnosed initially as Larsen syndrome, humero-spinal dysostosis, or chondrodysplasia with dislocations. The incidence of CHST3 deficiency seems to be higher than assumed so far. The clinical and radiographic pattern (joint dislocations, vertebral changes, normal carpal age, lack of facial flattening, and recessive inheritance) is characteristic and distinguishes CHST3 deficiency from other disorders with congenital dislocations such as filamin B-associated dominant Larsen syndrome and Desbuquois syndrome.
Resumo:
Purpose: Animal models are essential to study pathological mechanisms and to test new therapeutic strategies. Many mouse models mimic human rod loss but only a limited number simulate cone dystrophies. The importance of cone function for human vision highlights the need to engineer a model for cone degeneration. An approach of lentiviral-directed transgenesis was tested in mice to express a dominant mutant gene described in a human cone dystrophy.Methods: Lentiviral vectors (LV) encoding either hrGFPII or the human double mutant GUCY2DE837D/R838S cDNA under the control of a region of the pig arrestin-3 promoter (Arr3) were produced and used for lentiviral-derived transgenesis. PCR-genotyping determined the transgenic mouse ratio. The expression of GFP was then analyzed both in vivo and by immunohistochemistry in Arr3-GFPII mice. Functional analysis was performed by ERG at 5, 9, 16 and 24 weeks for Arr3-GUCY2DE837D/R838S mice. Mice were sacrificed at 10 months of age for both histological analysis and RNA extraction.Results: While all the newborns from the transgenesis using the LV-Arr3-GFPII were transgenic, one third of the newborns from the LV-Arr3-GUCY2DE837D/R838S transgenesis were positive. Expression of GFPII was demonstrated by in vivo imaging, while expression of the mutant GUCY2D transcript was detetected using RT-PCR. No severe alteration of the functional response was observed up to 24 weeks of age in the transgenic mice. No obvious modification of the retinal morphology was identified either.Conclusions: Lentiviral-directed transgenesis is a rapid and straightforward method to engineer transgenic mice. Protein expression can be specifically targeted to the retina and thus could help to study the effect of expression of dominant mutant proteins. In our case, Arr3-GUCY2DE837D/R838S mice have a less severe phenotype than that described for human patients. Further analyses are required to understand this difference but several modifications of the expression cassette might also help to increase the expression of the mutant protein and reinforce the phenotype. Interestingly, the same construct is less effective in mouse versus pig retina (see Arsenijevic et al. ARVO 2011 abstract).
Resumo:
The aim of the present study was to evaluate the prenatal detection of rare chromosomal autosomal abnormalities by ultrasound (US) examination. Data were obtained from 19 congenital malformation registries from 11 European countries, between 01/07/96 and 31/12/98. A total of 664,340 births were covered and 7,758 cases with congenital malformations were recorded. Rare autosomal abnormalities were diagnosed in 114 cases (6.6%) from a total of 1,738 chromosome abnormalities. There were a wide variety of autosomal abnormalities: the most common were deletions (33 cases), duplications (32 cases), trisomies of chromosomes 8, 9, 10, 14, 15, and 16 (23 cases), and unbalanced rearrangements (19 cases). Out of these cases, 45.6% were detected prenatally by US examination due to the presence of congenital anomaly. As for the types of chromosomal anomaly, unbalanced rearrangements and deletions were the most frequently detected by US. A high percentage of cases with balanced rearrangements were associated with severe congenital anomalies. The most frequent congenital anomalies detected by US were cystic hygroma (20.6%), central nervous system defects (17.6%), cardiac defects (13.2%), and diaphragm defects (10.3%). This large series offers useful information about prenatal diagnosis by US of congenital defects associated with rare autosomal abnormalities and it provides a valuable knowledge about outcome. Fetal anomalies detected by US that were associated with rare autosomal abnormalities were significantly more frequent than those associated with common chromosomal abnormalities (45.6 vs. 34.7%). This study indicates the need to increase the detection of congenital anomalies by US.
Resumo:
Immune protection from infectious diseases and cancer is mediated by individual T cells of different clonal origin. Their functions are tightly regulated but not yet fully characterized. Understanding the contribution of each T cell will improve the prediction of immune protection based on laboratory assessment of T-cell responses. Here we developed techniques for simultaneous molecular and functional assessment of single CD8 T cells directly ex vivo. We studied two groups of patients with melanoma after vaccination with two closely related tumor antigenic peptides. Vaccination induced T cells with strong memory and effector functions, as found in virtually all T cells of the first patient group, and fractions of T cells in the second group. Interestingly, high functionality was not restricted to dominant clonotypes. Rather, dominant and nondominant clonotypes acquired equal functional competence. In parallel, this was also found for EBV- and CMV-specific T cells. Thus, the nondominant clonotypes may contribute similarly to immunity as their dominant counterparts.
Resumo:
Résumé Les télomères sont les structures ADN-protéines des extrémités des chromosomes des eucaryotes. L'ADN télomérique est constitué de courtes séquences répétitives. L'intégrité des télomères est essentielle pour protéger les extrémités des chromosomes contre les systèmes de dégradations et pour les distinguer des cassures de l'ADN double brin. Parce que la machinerie de la réplication de l'ADN n'est pas capable de répliquer l'extrémité des chromosomes, les télomères raccourcissent au fur et à mesure des cycles de réplication. Dès que les télomères atteignent une longueur critique, leur structure protectrice est perdue. Cela induit un signal de dommage de l'ADN et l'arrêt du cycle cellulaire. Pour contrebalancer le raccourcissement des télomères, les cellules qui s'auto régénèrent, dont les cellules de la moelle osseuse, les lymphocytes activés et 80-90% des cellules cancéreuses, expriment la télomérase. C'est une ribonucléoprotéine qui a la capacité de synthétiser des séquences télomériques par transcription inverse d'une courte séquence contenue dans sa propre sous-unité ARN avec laquelle elle est associée. La télomérase humaine est une enzyme processive au niveau de l'addition des nucléotides et aussi des répétitions télomériques. La télomérase de levure et la télomérase humaine sont toutes deux dimériques et il a été montré que la télomérase humaine recombinante contient deux ARN qui coopèrent pour fonctionner ainsi que deux sous-unités catalytiques. Cependant, il n'a pas encore été montré quel est le rôle de la dimérisation dans l'activité de la télomérase. Afin d'élucider ce rôle, nous avons exprimé, reconstitué et purifié la télomérase humaine dimérique recombinante. Et pour étudier l'effet d'ARN mutants sur l'activité de la télomérase, nous avons développé une méthode pour reconstituer et enrichir en hétérodimères de télomérase. Les hétérodimères contiennent une sous-unité ARN sauvage et une sous-unité ARN mutée au niveau de la séquence de la matrice. Sur l'ARN muté nous avons introduit une étiquette aptamer ARN-S1 puis nous avons purifié la télomérase via l'etiquette Si. Nous avons montré que la dimérisation est essentielle pour l'activité de la télomérase. Nos données indiquent que chaque télomérase du dimère allonge leur substrat, l'ADN télomérique, indépendamment l'une de l'autre à chaque cycle d'élongation mais que l'addition itérative de répétitions télomériques nécessite une coopération entre les deux télomérases du dimère. Nous proposons donc un modèle dans lequel les deux télomérases du dimères se lient et allongent deux substrats télomères et que pendant l'élongation processive les deux enzymes subissent un changement de conformation de manière coordonnée, ce changement va permettre le repositionnement des substrats pour d'autres cycles d'additions de répétitions télomériques. Dyskeratosis congenita est une maladie mortelle due majoritairement au disfonctionnement de la moelle osseuse. Dans la forme autosomale de la maladie, l'ARN de la télomérase contient des mutations. En utilisant notre système de reconstitution, nous avons montré que ces ARN mutés, qui ont perdu leur activité enzymatique dans le cas d'un homodimère de mutants, sont dominant négatifs quand ils sont présents dans les hétérodimères sauvage/mutant. Cet effet trans-dominant négatif pourrait contribuer à la progression de la maladie. Abstract Telomeres are protein-DNA structures at the ends of linear eukaryotic chromosomes. The telomeric DNA consists of tandemly repeated sequences. Telomeric integrity is essential to protect chromosomal ends from nucleolytic degradation and to prevent their recognition as DNA double strand breaks. Due to the inability of the conventional DNA replication machinery to replicate terminal DNA stretches, telomeres shorten with continuous rounds of DNA replication. As soon as telomeres reach a critical length, their protective structure is lost and the deprotected telomeres will induce a DNA damage response leading to cell cycle arrest. To counteract telomere shortening, self-renewing cells, including bone marrow cells, activated lymphocytes and 80-90% of cancer cells express the cellular reverse transcriptase telomerase, which has the capacity to synthesize telomeric repeats by reverse transcription of a short template sequence encoded by its stably associated RNA subunit. Human telomerase is a processive enzyme for nucleotide as well as repeat addition. Both yeast and human telomerase are dimeric enzymes and recombinant human telomerase has been shown to contain two functionally cooperating RNAs and most probably also two protein subunits. However, it has remained unclear how dimerization may contribute to telomerase activity. To study the role of dimerization, we expressed, reconstituted and purified recombinant human telomerase. We also developed a new method to reconstitute and enrich for telomerase heterodimers containing wild-type (wt) and mutant telomerase RNA subunits. To this end we introduced an S1-RNA-aptamer tag into telomerase RNA and purified telomerase reconstituted with a mixture of untagged and tagged RNA via the S1-tag. Using this experimental system, we introduced template mutations in the tagged RNA subunit and examined the effect of mutant RNAs on wt telomerase activity in wt/mutant heterodimers. We obtained evidence that dimerization is essential for telomerase activity. Our data indicate that the two subunits elongate telomere substrates independently of each other during single rounds of elongation, but that iterative addition of telomeric repeats requires cooperation between the two subunits. We suggest a model, in which dimeric telomerases bind and elongate two telomere substrates and that the two subunits undergo coordinated conformational changes during processive elongation that enable repositioning the substrates for subsequent rounds of repeat addition. Dyskeratosis congenita is a multisystemic disease with bone marrow failure as the major cause of death. The autosomal form of this disease was found to harbor mutations in the telomerase RNA. Using our reconstitution system, we tested whether mutant dyskeratosis telomerase RNAs behaved in a dominant negative manner. We observed that dyskeratosis telomerase RNA mutants, which lacked enzymatic activity were dominant negative, when present in wt/ mutant heterodimers. The transdominant negative effect of these mutants may contribute to disease progression.
Resumo:
When competing over parental resources, young animals may be typically selfish to the point of siblicide. This suggests that limited parental resources promote the evolution of sibling competition rather than altruistic or cooperative behaviours. In striking contrast, we show here that in 71% of experimental three-chick broods, nestling barn owls, Tyto alba, gave food to their siblings on average twice per night. This behaviour prevailed in the first-born dominant nestlings rather than the last-born subordinate nestlings. It was also more prevalent in individuals displaying a heritable dark phaeomelanin-based coloration, a typical female-specific plumage trait (owls vary from dark reddish to white, females being on average darker reddish than males). Stealing food items from siblings, which occurred in 81% of the nests, was more frequent in light than dark phaeomelanic dominant nestlings. We suggest that food sharing has evolved in the barn owl because parents store prey items in their nest that can be used by the offspring to feed their nestmates to derive indirect (kin selection) or direct benefits (pseudoreciprocity or by-product mutualism). The cost of feeding siblings may be relatively low for dominant individuals while the indirect genetic benefits could be high given that extrapair paternity is infrequent in this species. Thus, in situations in which young animals have access to more food resources than they currently need, they can altruistically share them with their siblings.
Resumo:
ABSTRACTThe Online Mendelian Inheritance in Man database (OMIM) reports about 3000 Mendelian diseases of known causal gene and about 2000 that remain to be mapped. These cases are often difficult to solve because of the rareness of the disease, the structure of the family (too big or too small) or the heterogeneity of the phenotype. The goal of this thesis is to explore the current genetic tools, before the advent of ultra high throughput sequencing, and integrate them in the attempt to map the genes behind the four studied cases. In this framework we have studied a small family with a recessive disease, a modifier gene for the penetrance of a dominant mutation, a large extended family with a cardiac phenotype and clinical and/or allelic heterogeneity and we have molecularly analyzed a balanced chromosomal translocation.RESUMELa base de données des maladies à transmission mendélienne, Online Mendelian Inheritance in Man (OMIM), contient environ 3000 affections à caractère mendélien pour lesquelles le gène responsable est connu et environ 2000 qui restent à élucider.Les cas restant à résoudre sont souvent difficiles soit par le caractère intrinsèquement rare de ces maladies soit à cause de difficultés structurelles (famille trop petite ou trop étendue) ou hétérogénéité du phénotype ou génétique. Cette thèse s'inscrit avant l'arrivée des nouveaux outils de séquençage à haut débit. Son but est d'explorer les outils génétiques actuels, et de les intégrer pour trouver les gènes impliqués dans quatre cas représentant chacun une situation génétique différente : nous avons étudié une famille de quatre individus avec une transmission récessive, recherché un gène modificateur de la pénétrance de mutations dominantes, étudié une famille étendue présentant un phénotype cardiaque cliniquement et/ou allèliquement hétérogène et nous avons fait l'analyse moléculaire d'une translocation chromosomique balancée.