340 resultados para ATP binding cassette transporter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose transporter-1 deficiency syndrome is caused by mutations in the SLC2A1 gene in the majority of patients and results in impaired glucose transport into the brain. From 2004-2008, 132 requests for mutational analysis of the SLC2A1 gene were studied by automated Sanger sequencing and multiplex ligation-dependent probe amplification. Mutations in the SLC2A1 gene were detected in 54 patients (41%) and subsequently in three clinically affected family members. In these 57 patients we identified 49 different mutations, including six multiple exon deletions, six known mutations and 37 novel mutations (13 missense, five nonsense, 13 frame shift, four splice site and two translation initiation mutations). Clinical data were retrospectively collected from referring physicians by means of a questionnaire. Three different phenotypes were recognized: (i) the classical phenotype (84%), subdivided into early-onset (<2 years) (65%) and late-onset (18%); (ii) a non-classical phenotype, with mental retardation and movement disorder, without epilepsy (15%); and (iii) one adult case of glucose transporter-1 deficiency syndrome with minimal symptoms. Recognizing glucose transporter-1 deficiency syndrome is important, since a ketogenic diet was effective in most of the patients with epilepsy (86%) and also reduced movement disorders in 48% of the patients with a classical phenotype and 71% of the patients with a non-classical phenotype. The average delay in diagnosing classical glucose transporter-1 deficiency syndrome was 6.6 years (range 1 month-16 years). Cerebrospinal fluid glucose was below 2.5 mmol/l (range 0.9-2.4 mmol/l) in all patients and cerebrospinal fluid : blood glucose ratio was below 0.50 in all but one patient (range 0.19-0.52). Cerebrospinal fluid lactate was low to normal in all patients. Our relatively large series of 57 patients with glucose transporter-1 deficiency syndrome allowed us to identify correlations between genotype, phenotype and biochemical data. Type of mutation was related to the severity of mental retardation and the presence of complex movement disorders. Cerebrospinal fluid : blood glucose ratio was related to type of mutation and phenotype. In conclusion, a substantial number of the patients with glucose transporter-1 deficiency syndrome do not have epilepsy. Our study demonstrates that a lumbar puncture provides the diagnostic clue to glucose transporter-1 deficiency syndrome and can thereby dramatically reduce diagnostic delay to allow early start of the ketogenic diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La majorité des organelles d'une cellule adaptent leur nombre et leur taille pendant les processus de division cellulaire, de trafic vésiculaire ou suite à des changements environnementaux par des processus de fusion et de fragmentation membranaires. Ceci est valable notamment pour le golgi, les mitochondries, les péroxisomes et les lysosomes. La vacuole est le compartiment terminal de la voie endocytaire dans la levure Saccharomyces cerevisiae\ elle correspond aux lysosomes des cellules mammifères. Suite à un choc hyperosmotique, la vacuole se fragmente en plusieurs petites vésicules. Durant ce projet, cette fragmentation a été étudiée en utilisant la technique de microscopie confocale in vivo. J'ai observé que la division de la vacuole se produit d'une façon asymétrique. La première minute après le choc osmotique, les vacuoles rétrécissent et forment des longues invaginations tubulaires. Cette phase est dépendante de la protéine Vps1, un membre de la famille des protéines apparentées à la dynamine, ainsi que d'un gradient transmembranaire de protons. Pendant les 10-15 minutes qui suivent, des vésicules se détachent dans les régions où l'on observe les invaginations pendant la phase initiale. Cette deuxième phase qui mène à la fission des nouveaux compartiments vacuolaires dépend de la production du lipide PI(3,5)P2 par la protéine Fab1. J'ai établi la suite des événements du processus de fragmentation des vacuoles et propose la possibilité d'un rôle régulateur de la protéine kinase cycline-dépendante Pho85.¦En outre, j'ai tenté d'éclaircir plus spécifiquement le rôle de Vps1 pendant la fusion et fission des vacuoles. J'ai trouvé que tous les deux processus sont dépendants de l'activité GTPase de cette protéine. De plus l'association avec la membrane vacuolaire paraît régulée par le cycle d'hydrolyse du GTP. Vps1 peut lier la membrane sans la présence d'un autre facteur protéinique, ce qui permet de conclure à une interaction directe avec des lipides de la membrane. Cette interaction est au moins partiellement effectuée par le domaine GTPase, ce qui est une nouveauté pour un membre de cette famille de protéines. Une deuxième partie de Vps1, nommée insert B, est impliquée dans la liaison à la vacuole, soit par interaction directe avec la membrane, soit par régulation du domaine GTPase. En assumant que Vps1 détienne deux régions capables de liaison aux membranes, je conclus qu'elle pourrait fonctionner comme facteur de « tethering » lors de la fusion des vacuoles.¦-¦La cellule contient plusieurs sous-unités, appelées organelles, possédant chacune une fonction spécifique. Dépendant des processus qui s'y déroulent à l'intérieur, un environnement chimique spécifique est requis. Pour maintenir ces différentes conditions, les organelles sont séparées par des membranes. Lors de la division cellulaire ou en adaptation à des changements de milieu, les organelles doivent être capables de modifier leur morphologie. Cette adaptation a souvent lieu par fusion ou division des organelles. Le même principe est valable pour la vacuole dans la levure. La vacuole est une organelle qui sert principalement au stockage des aliments et à la dégradation des différents composants cellulaires. Alors que la fusion des vacuoles est un processus déjà bien décrit, la fragmentation des vacuoles a jusqu'ici été peu étudiée. Elle peut être induit par un choc osmotique: à cause de la concentration de sel élevé dans le milieu, le cytosol de la levure perd de l'eau. Par un flux d'eau de la vacuole au cytosol, la cellule est capable d'équilibrer celui-ci. Quand la vacuole perd du volume, elle doit réadapter le rapport entre surface membranaire et volume, ce qui se fait efficacement par une fragmentation d'une grande vacuole en plusieurs petites vésicules. Comment ce processus se déroule d'un point de vue morphologique n'a pas été décrit jusqu'à présent. En analysant la fragmentation vacuolaire par microscopie, j'ai trouvé que celle-ci se déroule en deux phases. Pendant la première minute suivant le choc osmotique, les vacuoles rétrécissent et forment des longues invaginations tubulaires. Cette phase dépend de la protéine Vps1, un membre de la famille des protéines apparentées à la dynamine, ainsi que du gradient transmembranaire de protons. Ce gradient s'établit par une pompe membranaire, la V-ATPase, qui transporte des protons dans la vacuole en utilisant l'énergie libérée par hydrolyse d'ATP. Après cette phase initiale, la formation de nouvelles vésicules vacuolaires dépend de la synthèse du lipide PI(3,5)P2.¦Dans la deuxième partie de l'étude, j'ai tenté de décrire comment Vps1 lie la membrane pour effectuer un remodelage de la vacuole. Vps1 est nécessaire pour la fusion et la fragmentation des vacuoles. J'ai découvert que tous les deux processus dépendent de sa capacité d'hydrolyser du GTP. Ainsi l'association avec la membrane est couplée au cycle d'hydrolyse du GTP. Vps1 peut lier la membrane sans la présence d'une autre protéine, et interagit donc très probablement avec les lipides de la membrane. Deux parties différentes de la protéine sont impliquées dans la liaison, dont une, inattendue, le domaine GTPase.¦-¦Numerous organelles undergo membrane fission and fusion events during cell division, vesicular traffic, or in response to changes in environmental conditions. Examples include Golgi (Acharya et al., 1998) mitochondria (Bleazard et al., 1999) peroxisomes (Kuravi et al., 2006) and lysosomes (Ward et al., 1997). In the yeast Saccharomyces cerevisiae the vacuole is the terminal component of the endocytic pathway and corresponds to lysosomes in mammalian cells. Yeast vacuoles fragment into multiple small vesicles in response to a hypertonic shock. This rapid and homogeneous reaction can serve as a model to study the requirements of the fragmentation process. Here, I investigated osmotically induced fragmentation by time-lapse microscopy. I observe that the small fragmentation products originate directly from the large central vacuole by asymmetric scission rather than by consecutive equal divisions and that fragmentation occurs in two distinct phases. During the first minute, vacuoles shrink and generate deep invaginations, leaving behind tubular structures. This phase requires the dynamin-like GTPase Vps1 and the vacuolar proton gradient. In the subsequent 10-15 minutes, vesicles pinch off from the tubular structures in a polarized fashion, directly generating fragmentation products of the final size. This phase depends on the production of phosphatidylinositol- 3,5-bisphosphate by the Fab1 complex. I suggest a possible regulation of vacuole fragmentation by the CDK Pho85. Based on my microscopy study I established a sequential involvement of the different fission factors.¦In addition to the morphological description of vacuole fragmentation I more specifically aimed to shed some light on the role of Vps1 in vacuole fragmentation and fusion. I find that both functions are dependent on the GTPase activity of the protein and that also the membrane association of the dynamin-like protein is coupled to the GTPase cycle. I found that Vps1 has the capacity for direct lipid binding on the vacuole and that this lipid binding is at least partially mediated through residues in the GTPase domain, a complete novelty for a dynamin family member. A second stretch located in the region of insert Β has also membrane-binding activity or regulates the association with the vacuole through the GTPase domain. Under the assumption of two membrane-binding regions I speculate on Vps1 as a possible tethering factor for vacuole fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have described previously a transcription-dependent induction of glycogen resynthesis by the vasoactive intestinal peptide (VIP) or noradrenaline (NA) in astrocytes, which is mediated by cAMP. Because it has been postulated that the cAMP-mediated regulation of energy balance in hepatocytes and adipocytes is channeled at least in part through the CCAAT/enhancer binding protein (C/EBP) family of transcription factors, we tested the hypothesis that C/EBP isoforms could be expressed in mouse cortical astrocytes and that their level of expression could be regulated by VIP, by the VIP-related neuropeptide pituitary adenylate cyclase-activating peptide (PACAP), or by NA. We report in this study that in these cells, C/EBP beta and C/EBP delta are induced by VIP, PACAP, or NA via the cAMP second-messenger pathway. Induction of C/EBP beta and -delta mRNA by VIP occurs in the presence of a protein synthesis inhibitor. Thus, c/ebp beta and c/ebp delta behave as cAMP-inducible immediate-early genes in astrocytes. Moreover, transfection of astrocytes with expression vectors selectively producing the transcriptionally active form of C/EBP beta, termed liver-enriched transcriptional activator protein, or C/EBP delta enhance the glycogen resynthesis elicited by NA, whereas an expression vector producing the transcriptionally inactive form of C/EBP beta, termed liver-enriched transcriptional inhibitory protein, reduces this resynthesis. These results support the idea that C/EBP beta and -delta regulate gene expression of energy metabolism-related enzymes in astrocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expression of two important glucose transporter proteins, GLUT 2 (which is the typical glucose transporter in hepatocytes of adult liver) and the erythroid/brain type glucose transporter GLUT 1 (representing the typical glucose transporter in fetal liver parenchyma), was studied immunocytochemically during hepatocarcinogenesis in rats at different time points between 7 and 65 wk after cessation of 7-wk administration of 12 mg/kg of body weight of N-nitrosomorpholine p.o. (stop model). Foci of altered hepatocytes excessively storing glycogen (GSF) and mixed cell foci (MCF) composed of both glycogenotic and glycogen-poor cells were present at all time points studied. Seven wk after withdrawal of the carcinogen, GSF were the predominant type of focus of altered hepatocytes. Morphometrical evaluation of the focal lesions revealed that the number and volume fraction of GSF increased steadily until Wk 65. MCF were rare at 7 wk, increased slightly in number and size until Wk 37, but showed a pronounced elevation in their number and volume fraction from Wk 37 to Wk 65. In both GSF and MCF, GLUT 2 was generally decreased or partially absent at all time points. Consequently, foci of decreased GLUT 2 expression showed a steady increase in number and volume fraction from Wk 7 to Wk 65. GLUT 1 was lacking in GSF but occurred in some MCF from Wk 50 onward. The liver type glucose transporter GLUT 2 was decreased in all adenomas and hepatocellular carcinomas (HCC). In three of seven adenomas and 10 of 12 carcinomas, expression of GLUT 1 was increased compared with normal liver parenchyma. In two cases of adenoid HCC, cells of ductular formations coexpressed GLUT 2 and GLUT 1. In contrast, normal bile ducts, bile duct proliferations, and cystic cholangiomas expressed only GLUT 1. Seven of 12 HCC contained many microvessels intensely stained for GLUT 1, a phenomenon never observed in normal liver. Whenever adenoid tumor formations occurred, GLUT 1-positive microvessels were located in the immediate vicinity of these formations. Only in one HCC were such microvessels found in the absence of adenoid formations. Our studies indicate that a reduction of GLUT 2 expression occurs already in early preneoplastic hepatic foci and is maintained throughout hepatocarcinogenesis, including benign and malignant neoplasms. Reexpression of GLUT 1, however, appears in a few MCF and in the majority of adenomas and carcinomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose homoeostasis necessitates the presence in the liver of the high Km glucose transporter GLUT2. In hepatocytes, we and others have demonstrated that glucose stimulates GLUT2 gene expression in vivo and in vitro. This effect is transcriptionally regulated and requires glucose metabolism within the hepatocytes. In this report, we further characterized the cis-elements of the murine GLUT2 promoter, which confers glucose responsiveness on a reporter gene coding the chloramphenicol acetyl transferase (CAT) gene. 5'-Deletions of the murine GLUT2 promoter linked to the CAT reporter gene were transfected into a GLUT2 expressing hepatoma cell line (mhAT3F) and into primary cultured rat hepatocytes, and subsequently incubated at low and high glucose concentrations. Glucose stimulates gene transcription in a manner similar to that observed for the endogenous GLUT2 mRNA in both cell types; the -1308 to -212 bp region of the promoter contains the glucose-responsive elements. Furthermore, the -1308 to -338 bp region of the promoter contains repressor elements when tested in an heterologous thymidine kinase promoter. The glucose-induced GLUT2 mRNA accumulation was decreased by dibutyryl-cAMP both in mhAT3F cells and in primary hepatocytes. A putative cAMP-responsive element (CRE) is localized at the -1074/-1068 bp region of the promoter. The inhibitory effect of cAMP on GLUT2 gene expression was observed in hepatocytes transfected with constructs containing this CRE (-1308/+49 bp fragment), as well as with constructs not containing the consensus CRE (-312/+49 bp fragment). This suggests that the inhibitory effect of cAMP is not mediated by the putative binding site located in the repressor fragment of the GLUT2 promoter. Taken together, these data demonstrate that the elements conferring glucose and cAMP responsiveness on the GLUT2 gene are located within the -312/+49 region of the promoter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Site-directed mutagenesis and molecular dynamics analysis of the 3-D model of the alpha1B-adrenergic receptor (AR) were combined to identify the molecular determinants of the receptor involved in catecholamine binding. Our results indicate that the three conserved serines in the fifth transmembrane domain (TMD) of the alpha1B-AR play a distinct role in catecholamine binding versus receptor activation. In addition to the amino acids D125 in TMDIII and S207 in TMDV directly involved in ligand binding, our findings identify a large number of polar residues playing an important role in the activation process of the alpha1B-AR thus providing new insights into the structure/function relationship of G protein-coupled receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P-selectin glycoprotein ligand-1 (PSGL-1) mediates the capture (tethering) of free-flowing leukocytes and subsequent rolling on selectins. PSGL-1 interactions with endothelial selectins activate Src kinases and spleen tyrosine kinase (Syk), leading to α(L)β(2) integrin-dependent leukocyte slow rolling, which promotes leukocyte recruitment into tissues. In addition, but through a distinct pathway, PSGL-1 engagement activates ERK. Because ezrin, radixin and moesin proteins (ERMs) link PSGL-1 to actin cytoskeleton and because they serve as adaptor molecules between PSGL-1 and Syk, we examined the role of PSGL-1 ERM-binding sequence (EBS) on cell capture, rolling, and signaling through Syk and MAPK pathways. We carried out mutational analysis and observed that deletion of EBS severely reduced 32D leukocyte tethering and rolling on L-, P-, and E-selectin and slightly increased rolling velocity. Alanine substitution of Arg-337 and Lys-338 showed that these residues play a key role in supporting leukocyte tethering and rolling on selectins. Importantly, EBS deletion or Arg-337 and Lys-338 mutations abrogated PSGL-1-induced ERK activation, whereas they did not prevent Syk phosphorylation or E-selectin-induced leukocyte slow rolling. These studies demonstrate that PSGL-1 EBS plays a critical role in recruiting leukocytes on selectins and in activating the MAPK pathway, whereas it is dispensable to phosphorylate Syk and to lead to α(L)β(2)-dependent leukocyte slow rolling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B cell activating factor of the tumor necrosis factor (TNF) family (BAFF) and a proliferation-inducing ligand (APRIL) are closely related ligands within the TNF superfamily that play important roles in B lymphocyte biology. Both ligands share two receptors--transmembrane activator and calcium signal--modulating cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA)--that are predominantly expressed on B cells. In addition, BAFF specifically binds BAFF receptor, whereas the nature of a postulated APRIL-specific receptor remains elusive. We show that the TNF homology domain of APRIL binds BCMA and TACI, whereas a basic amino acid sequence (QKQKKQ) close to the NH2 terminus of the mature protein is required for binding to the APRIL-specific "receptor." This interactor was identified as negatively charged sulfated glycosaminoglycan side chains of proteoglycans. Although T cell lines bound little APRIL, the ectopic expression of glycosaminoglycan-rich syndecans or glypicans conferred on these cells a high binding capacity that was completely dependent on APRIL's basic sequence. Moreover, syndecan-1-positive plasma cells and proteoglycan-rich nonhematopoietic cells displayed high specific, heparin-sensitive binding to APRIL. Inhibition of BAFF and APRIL, but not BAFF alone, prevented the survival and/or the migration of newly formed plasma cells to the bone marrow. In addition, costimulation of B cell proliferation by APRIL was only effective upon APRIL oligomerization. Therefore, we propose a model whereby APRIL binding to the extracellular matrix or to proteoglycan-positive cells induces APRIL oligomerization, which is the prerequisite for the triggering of TACI- and/or BCMA-mediated activation, migration, or survival signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monocarboxylate transporter MCT4 is a proton-linked carrier particularly important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is exclusively expressed by astrocytes. Surprisingly, MCT4 expression in primary cultures of mouse cortical astrocytes is conspicuously low, suggesting that an external, nonastrocytic signal is necessary to obtain the observed pattern of expression in vivo. Here, we demonstrate that nitric oxide (NO), delivered by various NO donors, time- and dose-dependently induces MCT4 expression in cultured cortical astrocytes both at the mRNA and protein levels. In contrast, NO does not enhance the expression of MCT1, the other astrocytic monocarboxylate transporter. The transcriptional effect of NO is not mediated by a cGMP-dependent mechanism as shown by the absence of effect of a cGMP analog or of a selective guanylate cyclase inhibitor. NO causes an increase in astrocytic lactate transport capacity which requires the enhancement of MCT4 expression as both are prevented by the use of a specific siRNA against MCT4. In addition, cumulated lactate release by astrocytes over a period of 24 h was also enhanced by NO treatment. Our data suggest that NO represents a putative intercellular signal to control MCT4 expression in astrocytes and in doing so, to facilitate lactate transfer to other surrounding cell types in the central nervous system. © 2011 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T cell migration, essential for immune surveillance and response, is mediated by the integrin LFA-1. CatX, a cysteine carboxypeptidase, is involved in the regulation of T cell migration by interaction with LFA-1. We show that sequential cleavage of C-terminal amino acids from the β(2) cytoplasmic tail of LFA-1, by CatX, enhances binding of the adaptor protein talin to LFA-1 and triggers formation of the latter's high-affinity form. As shown by SPR analysis of peptides constituting the truncated β(2) tail, the cleavage of three C-terminal amino acids by CatX resulted in a 1.6-fold increase of talin binding. Removal of one more amino acid resulted in a 2.5-fold increase over the intact tail. CatX cleavage increased talin-binding affinity to the MD but not the MP talin-binding site on the β(2) tail. This was shown by molecular modeling of the β(2) tail/talin F3 complex to be a result of conformational changes affecting primarily the distal-binding site. Analysis of LFA-1 by conformation-specific mAb showed that CatX modulates LFA-1 affinity, promoting formation of high-affinity from intermediate-affinity LFA-1 but not the initial activation of LFA-1 from a bent to extended form. CatX post-translational modifications may thus represent a mechanism of LFA-1 fine-tuning that enables the trafficking of T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AIMS: Marked changes in metabolism, including liver steatosis and hypoglycemia, occur after partial hepatectomy. Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a nuclear hormone receptor that is activated by fatty acids and involved in hepatic fatty acid metabolism and regeneration. Liver fatty acid binding protein (LFABP) is an abundant protein in liver cytosol whose expression is regulated by PPAR alpha. It is involved in fatty acid uptake and diffusion and in PPAR alpha signaling. The aim of this study was to investigate the expression of PPAR alpha and LFABP during liver regeneration. METHODS: Male Sprague-Dawley rats and male C57 Bl/6 mice were subjected to 2/3 hepatectomy and LFABP and PPAR alpha mRNA and protein levels were measured at different time points after surgery. The effect of partial hepatectomy was followed during 48 h in rats and 72 h in mice. RESULTS: PPAR alpha mRNA and protein levels were decreased 26 h after hepatectomy of rats. The LFABP mRNA and protein levels paralleled those of PPAR alpha and were also decreased 26 h after hepatectomy. In mice, the mRNA level was decreased after 36 and 72 h after hepatectomy. In this case, LFABP mRNA levels decreased more slowly after partial hepatectomy than in rats. CONCLUSIONS: A marked decrease in PPAR alpha expression may be important for changed gene expression, e.g. LFABP, and metabolic changes, such as hypoglycemia, during liver regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Xenopus vitellogenin (vit) gene B1 estrogen-inducible enhancer is formed by two closely adjacent 13 bp imperfect palindromic estrogen-responsive elements (EREs), i.e. ERE-2 and ERE-1, having one and two base substitutions respectively, when compared to the perfect palindromic consensus ERE (GGTCANNNTGACC). Gene transfer experiments indicate that these degenerated elements, on their own, have a low or no regulatory capacity at all, but in vivo act together synergistically to confer high receptor- and hormone-dependent transcription activation to the heterologous HSV thymidine kinase promoter. Thus, the DNA region upstream of the vitB1 gene comprising these two imperfect EREs separated by 7 bp, was called the vitB1 estrogen-responsive unit (vitB1 ERU). Using in vitro protein-DNA interaction techniques, we demonstrate that estrogen receptor dimers bind cooperatively to the imperfect EREs of the vitB1 ERU. Binding of a first receptor dimer to the more conserved ERE-2 increases approximately 4- to 8-fold the binding affinity of the receptor to the adjacent less conserved ERE-1. Thus, we suggest that the observed synergistic estrogen-dependent transcription activation conferred by the pair of hormone-responsive DNA elements of the vit B1 ERU is the result of cooperative binding of two estrogen receptor dimers to these two adjacent imperfect EREs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waardenburg anophthalmia syndrome, also known as microphthalmia with limb anomalies, ophthalmoacromelic syndrome, and anophthalmia-syndactyly, is a rare autosomal-recessive developmental disorder that has been mapped to 10p11.23. Here we show that this disease is heterogeneous by reporting on a consanguineous family, not linked to the 10p11.23 locus, whose two affected children have a homozygous mutation in SMOC1. Knockdown experiments of the zebrafish smoc1 revealed that smoc1 is important in eye development and that it is expressed in many organs, including brain and somites.