156 resultados para îlot de Langerhans
Resumo:
The emergence of multicellular organisms has necessitated the development of mechanisms for interactions between adjacent and distant cells. A consistent feature of this network is the expression of gap junction channels between the secretory cells of all glands so far investigated in vertebrates. Here, we reviewed the distribution of the gap junctions proteins, named connexins, in a few mammalian glands, and discussed the recent evidence pointing to the participation of these proteins in the functioning of endocrine and exocrine cells. Specifically, available data indicate the importance of gap junctions for the proper control of glucose-induced insulin secretion. Understanding the functions of beta-cell connexins are crucial for the engineering of surrogate cells, which is necessary for implementation of a replacement cell therapy in diabetic patients.
Resumo:
The management of lymph nodes in nonmelanoma skin cancer patients is currently still debated. Merkel cell carcinoma (MCC), squamous cell carcinoma (SCC), pigmented epithelioid melanocytoma (PEM), and other rare skin neoplasms have a well-known risk to spread to regional lymph nodes. The use of sentinel lymph node biopsy (SLNB) could be a promising procedure to assess this risk in clinically N0 patients. Metastatic SNs have been observed in 4.5-28% SCC (according to risk factors), in 9-42% MCC, and in 14-57% PEM. We observed overall 30.8% positive SNs in 13 consecutive patients operated for high-risk nonmelanoma skin cancer between 2002 and 2011 in our institution. These high rates support recommendation to implement SLNB for nonmelanoma skin cancer especially for SCC patients. Completion lymph node dissection following positive SNs is also a matter of discussion especially in PEM. It must be remembered that a definitive survival benefit of SLNB in melanoma patients has not been proven yet. However, because of its low morbidity when compared to empiric elective lymph node dissection or radiation therapy of lymphatic basins, SLNB has allowed sparing a lot of morbidity and could therefore be used in nonmelanoma skin cancer patients, even though a significant impact on survival has not been demonstrated.
Resumo:
Pancreatic ß cells are highly specialized endocrine cells located within the islets of Langerhans in the pancreas. Their main role is to produce and secrete insulin, the hormone essential for the regulation of glucose homeostasis and body's metabolism. Diabetes mellitus develops when the amount of insulin released by ß cells is not sufficient to cover the metabolic demand. In type 1 diabetes (5-10% of diagnoses) insulin deficiency is caused by the autoimmune destruction of pancreatic ß cells. Type 2 diabetes (90% of diagnoses) results from a genetic predisposition and from the presence of adverse environmental conditions. The combination of these factors reduces insulin sensitivity of peripheral target tissues, causes impairment in ß-cell function and can lead to partial loss of ß cells. The development of novel therapeutic strategies for the treatment of diabetes necessitates the comprehension of the cellular processes involved in dysfunction and loss of ß cells. My thesis was focused on the involvement in the physiopathological processes leading to the development of diabetes of a class of small regulatory RNA molecules, called microRNAs (miRNAs) that post- transcriptionally regulate gene expression. Global miRNA profiling in pancreatic islets of two animal models of diabetes, the db/db mice and mice that were fed a high fat diet (HFD), characterized by obesity and insulin resistance, led us to identify two groups of miRNAs displaying expression changes under pre-diabetic and diabetic conditions. Among the miRNAs already upregulated in pre-diabetic db/db mice and HFD mice, miR- 132 was found to have beneficial effects on pancreatic ß cell function and survival. Indeed, mimicking the upregulation of miR-132 in primary pancreatic islet cells and ß-cell lines improved glucose- induced insulin secretion and favored survival of the cells upon exposure to pro-apoptotic stimuli such as palmitate and cytokines. MiR-132 was found to exert its action by enhancing the expression of MafA, a transcription factor essential for ß-cell function, survival and identity. On the other hand, up-regulation of miR-199a-5p and miR-199a-3p was detectable only in the islets of diabetic db/db mice and resulted in impaired insulin secretion and sensitization of the cells to apoptosis. MiR-199a- 5p was found to decrease insulin secretion by inducing the expression of granuphilin, a potent inhibitor of ß cell exocytosis. In contrast, miR-199a-3p was demonstrated to directly target and reduce the expression of two key ß-cell genes, mTOR and cMET, resulting in impaired ß-cell adaptation to metabolic demands and loss by apoptosis. Our findings suggest that miRNAs are important players in the onset of type 2 diabetes. MiRNA expression is adjusted in pancreatic ß cells exposed to a diabetogenic environment. These changes initially concern miRNAs responsible for adaptive processes aimed at compensating the onset of insulin resistance, but later such changes can be overlapped by modifications in the level of several additional miRNAs that favor ß-cell failure and the onset of type 2 diabetes.
Resumo:
Either 200 or 400 syngeneic islets were transplanted under the kidney capsule of normal or streptozocin-induced diabetic B6/AF1 mice. The diabetic mice with 400 islets became normoglycemic, but those with 200 islets, an insufficient number, were still diabetic after the transplantation (Tx). Two weeks after Tx, GLUT2 expression in the islet grafts was evaluated by immunofluorescence and Western blots, and graft function was examined by perfusion of the graft-bearing kidney. Immunofluorescence for GLUT2 was dramatically reduced in the beta-cells of grafts with 200 islets exposed to hyperglycemia. However, it was plentiful in grafts with 400 islets in a normoglycemic environment. Densitometric analysis of Western blots on graft homogenates demonstrated that GLUT2 protein levels in the islets, when exposed to chronic hyperglycemia for 2 weeks, were decreased to 16% of those of normal recipients. Moreover, these grafts had defective glucose-induced insulin secretion, while the effects of arginine were preserved. We conclude that GLUT2 expression in normal beta-cells is promptly down-regulated during exposure to hyperglycemia and may contribute to the loss of glucose-induced secretion of diabetes.
Resumo:
BACKGROUND: Human speech is greatly influenced by the speakers' affective state, such as sadness, happiness, grief, guilt, fear, anger, aggression, faintheartedness, shame, sexual arousal, love, amongst others. Attentive listeners discover a lot about the affective state of their dialog partners with no great effort, and without having to talk about it explicitly during a conversation or on the phone. On the other hand, speech dysfunctions, such as slow, delayed or monotonous speech, are prominent features of affective disorders. METHODS: This project was comprised of four studies with healthy volunteers from Bristol (English: n = 117), Lausanne (French: n = 128), Zurich (German: n = 208), and Valencia (Spanish: n = 124). All samples were stratified according to gender, age, and education. The specific study design with different types of spoken text along with repeated assessments at 14-day intervals allowed us to estimate the 'natural' variation of speech parameters over time, and to analyze the sensitivity of speech parameters with respect to form and content of spoken text. Additionally, our project included a longitudinal self-assessment study with university students from Zurich (n = 18) and unemployed adults from Valencia (n = 18) in order to test the feasibility of the speech analysis method in home environments. RESULTS: The normative data showed that speaking behavior and voice sound characteristics can be quantified in a reproducible and language-independent way. The high resolution of the method was verified by a computerized assignment of speech parameter patterns to languages at a success rate of 90%, while the correct assignment to texts was 70%. In the longitudinal self-assessment study we calculated individual 'baselines' for each test person along with deviations thereof. The significance of such deviations was assessed through the normative reference data. CONCLUSIONS: Our data provided gender-, age-, and language-specific thresholds that allow one to reliably distinguish between 'natural fluctuations' and 'significant changes'. The longitudinal self-assessment study with repeated assessments at 1-day intervals over 14 days demonstrated the feasibility and efficiency of the speech analysis method in home environments, thus clearing the way to a broader range of applications in psychiatry. © 2014 S. Karger AG, Basel.
Resumo:
In this paper we explore the possibility of improving, by genetic engineering, the resistance of insulin-secreting cells to the metabolic and inflammatory stresses that are anticipated to limit their function and survival when encapsulated and transplanted in a type 1 diabetic environment. We show that transfer of the Bcl-2 antiapoptotic gene, and of genes specifically interfering with cytokine intracellular signaling pathways, greatly improves resistance of the cells to metabolic limitations and inflammatory stresses.
Resumo:
Glucose exerts inverse effects upon the secretory function of islet alpha- and beta-cells, suppressing glucagon release and increasing insulin release. This diverse action may result from differences in glucose transport and metabolism between the two cell types. The present study compares glucose transport in rat alpha- and beta-cells. beta-Cells transcribed GLUT2 and, to a lesser extent, GLUT 1; alpha-cells contained GLUT1 but no GLUT2 mRNA. No other GLUT-like sequences were found among cDNAs from alpha- or beta-cells. Both cell types expressed 43-kDa GLUT1 protein which was enhanced by culture. The 62-kDa beta-cell GLUT2 protein was converted to a 58-kDa protein after trypsin treatment of the cells without detectable consequences upon glucose transport kinetics. In beta-cells, the rates of glucose transport were 10-fold higher than in alpha-cells. In both cell types, glucose uptake exceeded the rates of glucose utilization by a factor of 10 or more. Glycolytic flux, measured as D-[5(3)H]glucose utilization, was comparable in alpha- and beta-cells between 1 and 10 mmol/liter substrate. In conclusion, differences in glucose transporter gene expression between alpha- and beta-cells can be correlated with differences in glucose transport kinetics but not with different glucose utilization rates.
Resumo:
Here we evaluated the effect of leptin on glucose-induced insulin secretion by normal rat pancreatic islets. We show in perifusion experiments that leptin had no acute effect on the secretory activity of beta-cells. However, following preexposure to leptin a pronounced time- and dose-dependent inhibition of both first and second phases of secretion was observed. Maximum inhibition was obtained at 24 h and with 100 nM leptin. This inhibition did not involve a decrease in cellular insulin content. It was also not observed with islets from fa/fa rats. Leptin thus inhibits insulin secretion by a mechanism which requires long-term preexposure to the hormone and which may involve alteration in beta-cell gene expression.
Resumo:
Insulin controls glucose homeostasis by regulating glucose use in peripheral tissues, and its own production and secretion in pancreatic beta cells. These responses are largely mediated downstream of the insulin receptor substrates, IRS-1 and IRS-2 (refs 4-8), through distinct signalling pathways. Although a number of effectors of these pathways have been identified, their roles in mediating glucose homeostasis are poorly defined. Here we show that mice deficient for S6 kinase 1, an effector of the phosphatidylinositide-3-OH kinase signalling pathway, are hypoinsulinaemic and glucose intolerant. Whereas insulin resistance is not observed in isolated muscle, such mice exhibit a sharp reduction in glucose-induced insulin secretion and in pancreatic insulin content. This is not due to a lesion in glucose sensing or insulin production, but to a reduction in pancreatic endocrine mass, which is accounted for by a selective decrease in beta-cell size. The observed phenotype closely parallels those of preclinical type 2 diabetes mellitus, in which malnutrition-induced hypoinsulinaemia predisposes individuals to glucose intolerance.
Resumo:
The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-alpha (PPARalpha)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARalpha null (PPARalphaKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARalpha expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARalpha expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARalphaKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARalpha null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARalpha, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARalpha, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.
Resumo:
BACKGROUND: Since the emergence of diffusion tensor imaging, a lot of work has been done to better understand the properties of diffusion MRI tractography. However, the validation of the reconstructed fiber connections remains problematic in many respects. For example, it is difficult to assess whether a connection is the result of the diffusion coherence contrast itself or the simple result of other uncontrolled parameters like for example: noise, brain geometry and algorithmic characteristics. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we propose a method to estimate the respective contributions of diffusion coherence versus other effects to a tractography result by comparing data sets with and without diffusion coherence contrast. We use this methodology to assign a confidence level to every gray matter to gray matter connection and add this new information directly in the connectivity matrix. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that whereas we can have a strong confidence in mid- and long-range connections obtained by a tractography experiment, it is difficult to distinguish between short connections traced due to diffusion coherence contrast from those produced by chance due to the other uncontrolled factors of the tractography methodology.
Resumo:
BACKGROUND: Mental disorders, common in primary care, are often associated with physical complaints. While exposure to psychosocial stressors and development or presence of principal mental disorders (i.e. depression, anxiety and somatoform disorders defined as multisomatoforme disorders) is commonly correlated, temporal association remains unproven. The study explores the onset of such disorders after exposure to psychosocial stressors in a cohort of primary care patients with at least one physical symptom. METHOD: The cohort study SODA (SOmatization, Depression and Anxiety) was conducted by 21 private-practice GPs and three fellow physicians in a Swiss academic primary care centre. GPs included patients via randomized daily identifiers. Depression, anxiety or somatoform disorders were identified by the full Patient Health Questionnaire (PHQ), a validated procedure to identify mental disorders based on DSM-IV criteria. The PHQ was also used to investigate exposure to psychosocial stressors (before the index consultation and during follow up) and the onset of principal mental disorders after one year of follow up. RESULTS: From November 2004 to July 2005, 1020 patients were screened for inclusion. 627 were eligible and 482 completed the PHQ one year later and were included in the analysis (77%). At one year, prevalence of principal mental disorders was 30/153 (19.6% CI95% 13.6; 26.8) for those initially exposed to a major psychosocial stressor and 26/329 (7.9% CI95% 5.2; 11.4) for those not. Stronger association exists between psychosocial stressors and depression (RR = 2.4) or anxiety (RR = 3.5) than multisomatoforme disorders (RR = 1.8). Patients who are "bothered a lot" (subjective distress) by a stressor are therefore 2.5 times (CI95% 1.5; 4.0) more likely to experience a mental disorder at one year. A history of psychiatric comorbidities or psychological treatment was not a confounding factor for developing a principal mental disorder after exposure to psychosocial stressors. CONCLUSION: This primary care study shows that patients with physical complaints exposed to psychosocial stressors had a higher risk for developing mental disorders one year later. This temporal association opens the field for further research in preventive care for mental diseases in primary care patients.
Resumo:
Résumé La structure, ou l'architecture, des êtres vivants définit le cadre dans lequel la physique de la vie s'accomplit. La connaissance de cette structure dans ses moindres détails est un but essentiel de la biologie. Son étude est toutefois entravée par des limitations techniques. Malgré son potentiel théorique, la microscopie électronique n'atteint pas une résolution atomique lorsqu'elle est appliquée ä la matièxe biologique. Cela est dû en grande partie au fait qu'elle contient beaucoup d'eau qui ne résiste pas au vide du microscope. Elle doit donc être déshydratée avant d'être introduite dans un microscope conventionnel. Des artéfacts d'agrégation en découlent inévitablement. La cryo-microscopie électronique des sections vitreuses (CEMOVIS) a ëté développée afin de résoudre cela. Les spécimens sont vitrifiés, c.-à-d. que leur eau est immobilisée sans cristalliser par le froid. Ils sont ensuite coupés en sections ultrafines et celles-ci sont observées à basse température. Les spécimens sont donc observés sous forme hydratée et non fixée; ils sont proches de leur état natif. Durant longtemps, CEMOVIS était très difficile à exécuter mais ce n'est plus le cas. Durant cette thèse, CEMOVIS a été appliqué à différents spécimens. La synapse du système nerveux central a été étudiée. La présence dans la fente synaptique d'une forte densité de molécules organisées de manière périodique a été démontrée. Des particules luminales ont été trouvées dans Ies microtubules cérébraux. Les microtubules ont servi d'objets-test et ont permis de démontrer que des détails moléculaires de l'ordre du nm sont préservés. La compréhension de la structure de l'enveloppe cellulaire des bactéries Grampositives aété améliorée. Nos observations ont abouti à l'élaboration d'un nouveau modèle hypothétique de la synthèse de la paroi. Nous avons aussi focalisé notre attention sur le nucléoïde bactérien et cela a suscité un modèle de la fonction des différents états structuraux du nucléoïde. En conclusion, cette thèse a démontré que CEMOVIS est une excellente méthode poux étudier la structure d'échantillons biologiques à haute résolution. L'étude de la structure de divers aspects des êtres vivants a évoqué des hypothèses quant à la compréhension de leur fonctionnement. Summary The structure, or the architecture, of living beings defines the framework in which the physics of life takes place. Understanding it in its finest details is an essential goal of biology. Its study is however hampered by technical limitations. Despite its theoretical potential, electron microscopy cannot resolve individual atoms in biological matter. This is in great part due to the fact. that it contains a lot of water that cannot stand the vacuum of the microscope. It must therefore be dehydrated before being introduced in a conventional mìcroscope. Aggregation artefacts unavoidably happen. Cryo-electron microscopy of vitreous sections (CEMOVIS) has been developed to solve this problem. Specimens are vitrified, i.e. they are rapidly cooled and their water is immobilised without crystallising by the cold. They are then. sectioned in ultrathin slices, which are observed at low temperatures. Specimens are therefore observed in hydrated and unfixed form; they are close to their native state. For a long time, CEMOVIS was extremely tedious but this is not the case anymore. During this thesis, CEMOVIS was applied to different specimens. Synapse of central nervous system was studied. A high density of periodically-organised molecules was shown in the synaptic cleft. Luminal particles were found in brain microtubules. Microtubules, used as test specimen, permitted to demonstrate that molecular details of the order of nm .are preserved. The understanding of the structure of cell envelope of Gram-positive bacteria was improved. Our observations led to the elaboration of a new hypothetic model of cell wall synthesis. We also focused our attention on bacterial nucleoids and this also gave rise to a functional model of nucleoid structural states. In conclusion, this thesis demonstrated that CEMOVIS is an excellent method for studying the structure of bìologìcal specimens at high resolution. The study of the structure of various aspects of living beings evoked hypothesis for their functioning.
Resumo:
The GTPases Rab3a and Rab27a and their effectors Granuphilin/Slp4 and Noc2 are essential regulators of neuroendocrine secretion. Chronic exposure of pancreatic beta-cells to supraphysiological glucose levels decreased selectively the expression of these proteins. This glucotoxic effect was mimicked by cAMP-raising agents and blocked by PKA inhibitors. We demonstrate that the transcriptional repressor ICER, which is induced in a PKA-dependent manner by chronic hyperglycemia and cAMP-raising agents, is responsible for the decline of the four genes. ICER overexpression diminished the level of Granuphilin, Noc2, Rab3a and Rab27a by binding to cAMP responsive elements located in the promoters of these genes and inhibited exocytosis of beta-cells in response to secretagogues. Moreover, the loss in the expression of the genes of the secretory machinery caused by glucose and cAMP-raising agents was prevented by an antisense construct that reduces ICER levels. We propose that induction of inappropriate ICER levels lead to defects in the secretory process of pancreatic beta-cells possibly contributing, in conjunction with other known deleterious effects of hyperglycemia, to defective insulin release in type 2 diabetes.
Resumo:
We previously reported that pancreatic islet beta-cells from GLUT2-null mice lost the first phase but preserved the second phase of glucose-stimulated insulin secretion (GSIS). Furthermore, we showed that the remaining secretory activity required glucose uptake and metabolism because it can be blocked by inhibition of oxidative phosphorylation. Here, we extend these previous studies by analyzing, in GLUT2-null islets, glucose transporter isoforms and glucokinase expression and by measuring glucose usage, GSIS, and glucose-stimulated insulin mRNA biosynthesis. We show that in the absence of GLUT2, no compensatory expression of either GLUT1 or GLUT3 is observed and that glucokinase is expressed at normal levels. Glucose usage by isolated islets was increased between 1 and 6 mmol/l glucose but was not further increased between 6 and 20 mmol/l glucose. Parallel GSIS measurements showed that insulin secretion was not stimulated between 2.8 and 6 mmol/l glucose but was increased by >4-fold between 6 and 20 mmol/l glucose. Stimulation by glucose of total protein and insulin biosynthesis was also markedly impaired in the absence of GLUT2. Finally, we re-expressed GLUT2 in GLUT2-null beta-cells using recombinant lentiviruses and demonstrated a restoration of normal GSIS. Together, these data show that in the absence of GLUT2, glucose can still be taken up by beta-cells, albeit at a low rate, and that this transport activity is unlikely to be attributed to GLUT1 or GLUT3. This uptake activity, however, is limiting for normal glucose utilization and signaling to secretion and translation. These data further demonstrate the key role of GLUT2 in murine beta-cells for glucose signaling to insulin secretion and biosynthesis.