170 resultados para veia coccígea dorsal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A patient is described who presented with myoclonus of the first dorsal interosseus muscle of the right foot. This myoclonus occurred 18 months after trauma of the cutaneous branch of the deep peroneal nerve on the dorsal aspect of the foot. Tactile stimulation in the dermatome of this nerve, or an anaesthetic block of the deep peroneal nerve stopped the myoclonus. The different innervation between the efferent motor activity responsible for the movements and the sensory afference suppressing it points firmly towards involvement of central connections. However, abolition of the movement by anaesthesia suggests the presence of a peripheral ectopic generator. This finding confirms that focal myoclonus can have its origin in the peripheral nervous system and may be modulated by sensory inputs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although many studies have been carried out to verify the involvement of the peripheral nervous system (PNS) in dystrophia myotonica (DM1) patients, the results remain controversial. The generation of DM1 transgenic mice displaying the human DM1 phenotype provides a useful tool to investigate the type and incidence of structural abnormalities in the PNS. In the present study, the morphological and morphometric analysis of semi-thin sections of sciatic and sural nerves, lumbar dorsal root ganglia (DRG) and lumbar spinal cords revealed that in DM1 transgenic mice carrying 300 CTG repeats, there is no change in the number and diameter of myelinated axons compared to wild type. Only a non-significant reduction in the percentage of thin myelinated axons was detected in electron micrographs of ultra-thin sciatic nerve sections. Analysis of the number of neurons did not reveal a loss in number of either sensory neurons in the lumbar DRG or motor neurons in the lumbar spinal cord in these DM1 mice. Furthermore, in hind limb muscle sections, stained with a neurofilament antibody and alpha-bungarotoxin, the intramuscular axon arborization appeared normal in DM1 mice and undistinguishable from that in wild-type mice. Moreover, in DM1 mice, there was no irregularity in the structure or an increase in the endplate area. Also statistical analysis did not show an increase in endplate density or in the concentration of acetylcholine receptors. Altogether, these results suggest that 300 CTG repeats are not sufficient to induce axonopathy, demyelination or neuronopathies in this transgenic mouse model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

More than 246 million individuals worldwide are affected by diabetes mellitus (DM) and this number is rapidly increasing (http://www.eatlas. idf.org). 90% of all diabetic patients have type 2 DM, which is characterized by insulin resistance and b-cell dysfunction. Even though diabetic peripheral neuropathy (DPN) is the major chronic complication of DM its underlying pathophysiological mechanisms still remain unknown. To get more insight into the DPN associated with type 2 DM, we characterized the rodent model of this form of diabetes, the db/db mice. The progression of pathological changes in db/db mice mimics the ones observed in humans: increase of the body weight, insulin insensitivity, elevated blood glucose level and reduction in nerve conduction velocity (NCV). Decreased NCV, present in many peripheral neuropathies, is usually associated with demyelination of peripheral nerves. However, our detailed analysis of the sciatic nerves of db/db mice exposed for 4 months to hyperglycemia, failed to reveal any signs of demyelination in spite of significantly reduced NCV in these animals. We therefore currently focus our analysis on the structure of Nodes of Ranvier, regions of intense axo-glial interactions, which also play a crucial role in rapid saltatory impulse conduction. In addition we are also evaluating molecular changes in somas of sensory neurons projecting through sciatic nerve, which are localized in the dorsal root ganglia. We hope that the combination of these approaches will shed light on molecular alterations leading to DPN as a consequence of type 2 DM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The visual cortex in each hemisphere is linked to the opposite hemisphere by axonal projections that pass through the splenium of the corpus callosum. Visual-callosal connections in humans and macaques are found along the V1/V2 border where the vertical meridian is represented. Here we identify the topography of V1 vertical midline projections through the splenium within six human subjects with normal vision using diffusion-weighted MR imaging and probabilistic diffusion tractography. Tractography seed points within the splenium were classified according to their estimated connectivity profiles to topographic subregions of V1, as defined by functional retinotopic mapping. First, we report a ventral-dorsal mapping within the splenium with fibers from ventral V1 (representing the upper visual field) projecting to the inferior-anterior corner of the splenium and fibers from dorsal V1 (representing the lower visual field) projecting to the superior-posterior end. Second, we also report an eccentricity gradient of projections from foveal-to-peripheral V1 subregions running in the anterior-superior to posterior-inferior direction, orthogonal to the dorsal-ventral mapping. These results confirm and add to a previous diffusion MRI study (Dougherty et al., 2005) which identified a dorsal/ventral mapping of human splenial fibers. These findings yield a more detailed view of the structural organization of the splenium than previously reported and offer new opportunities to study structural plasticity in the visual system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The amygdala, hippocampus, medial prefrontal cortex (mPFC) and brain-stem subregions are implicated in fear conditioning and extinction, and are brain regions known to be sexually dimorphic. We used functional magnetic resonance imaging (fMRI) to investigate sex differences in brain activity in these regions during fear conditioning and extinction. METHODS: Subjects were 12 healthy men comparable to 12 healthy women who underwent a 2-day experiment in a 3 T MR scanner. Fear conditioning and extinction learning occurred on day 1 and extinction recall occurred on day 2. The conditioned stimuli were visual cues and the unconditioned stimulus was a mild electric shock. Skin conductance responses (SCR) were recorded throughout the experiment as an index of the conditioned response. fMRI data (blood-oxygen-level-dependent [BOLD] signal changes) were analyzed using SPM8. RESULTS: Findings showed no significant sex differences in SCR during any experimental phases. However, during fear conditioning, there were significantly greater BOLD-signal changes in the right amygdala, right rostral anterior cingulate (rACC) and dorsal anterior cingulate cortex (dACC) in women compared with men. In contrast, men showed significantly greater signal changes in bilateral rACC during extinction recall. CONCLUSIONS: These results indicate sex differences in brain activation within the fear circuitry of healthy subjects despite similar peripheral autonomic responses. Furthermore, we found that regions where sex differences were previously reported in response to stress, also exhibited sex differences during fear conditioning and extinction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Closely related species may be very difficult to distinguish morphologically, yet sometimes morphology is the only reasonable possibility for taxonomic classification. Here we present learning-vector-quantization artificial neural networks as a powerful tool to classify specimens on the basis of geometric morphometric shape measurements. As an example, we trained a neural network to distinguish between field and root voles from Procrustes transformed landmark coordinates on the dorsal side of the skull, which is so similar in these two species that the human eye cannot make this distinction. Properly trained neural networks misclassified only 3% of specimens. Therefore, we conclude that the capacity of learning vector quantization neural networks to analyse spatial coordinates is a powerful tool among the range of pattern recognition procedures that is available to employ the information content of geometric morphometrics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Quantification of daily upper-limb activity is determinant in the evaluation of shoulder surgery. For a number of shoulder diseases, roblems in performing daily activities have been expressed in terms of upper-limb usage. Althought many instruments measure upper-limb movements, there is no accepted standard or widely used objective measure and no device to differenciate left or right shoulder usage. We present an objective method to measure the mobility and quantify the usage of dominant and healthy or painfull shoulder movement during daily life. Methods: 12 patients with unilateral pathological shoulder (rotator cuff disease) are compared to 18 control subjects (10 right and 8 left handed). Both SST and DASH questionnaires were completed by each one. Three inertial miniature modules including triaxial gyroscopes and accelerometers were fixed on the dorsal side of both humerus, and on the thorax. An ambulatory datalogger have recorded the signals during one day. Results: We observed that right handed healthy subjects used 18% and 26% more their dominant shoulder during respectively stand and sit postures while left handed subjects used 8% and 18% more their left side. In walking periods, shoulder mobility was quite alike for both sides. Patients affected on their dominant arm (PD group) mostly used their non-dominant side (respectively 5% and 9% during stand and sit). For the patients affected on their non-dominant shoulder (PND group), this difference is respectively 28% and 26%. Moreover, we can note that, during walking periods, a difference can be observed (on the contrary to controls). Patients used 13% and 15% more their nonpathologic side respectively for PD and PND groups. Conclusion: Inertial sensors, during long-term ambulatory monitoring of upper limbs, can quantify the difference between dominant and nondominant sides. Patients used more their non affected shoulder during daily life. For the PD group, the difference with control can be shown during walking. These results are very encouraging for future evaluation of patients with shoulder injuries since it can provide an objective evaluation of the shoulder mobility and of the treatment outcome during daily life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cistern of the velum interpositum is a space located between the corpus callosum dorsally and the roof of the third ventricle ventrally. Lesions located within the velum interpositum are rare and include meningiomas, pilocytic astrocytomas, atypical teratoid/rhabdoid tumors and arachnoid cysts. Epidermoid cysts in this location have not been reported previously. We report the clinical and radiological features of two patients with epidermoid cysts located in the velum interpositum. The patients presented with gait difficulty and features of raised intracranial pressure and magnetic resonance imaging demonstrated large tumors in the velum interpositum with intensities suggestive of epidermoid cysts. There was ventral displacement of the internal cerebral veins and dorsal displacement of the corpus callosum in keeping with a mass in the velum interpositum. Tumors of the third ventricle displace the internal cerebral veins dorsally. A transcallosal approach was used in both patients to effectively excise the tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effet d'un bolus intraveineux de phénylephrine ou d'éphedríne sur le flux sanguin cutané lors d'une anesthésie rachidienne Introduction : La phénylephrine et l'éphedrine sont des substances vaso-actives utilisées de routine pour corriger des épisodes d'hypotension artérielle induits par l'anesthésie intrarachidienne. L'influence de ces deux vasopresseurs sur le flux sanguin cutané (FSC) dans ce contexte n'a jusqu'à maintenant pas été décrite. Cette étude évalue l'effet d'une injection intraveineuse de 75 µg de phénylephrine ou de 7.5 mg d'éphedrine sur le FSC mesuré par Laser Doppler, dans les zones concernées parle bloc sympathiqué induit par l'anesthésie intrarachidienne (membres inférieurs) et dans les zones non concernées (membres supérieurs). Méthode :Après acceptation par le Comité d'Éthique, et obtention de leur accord écrit, 20 patients devant subir une intervention chirurgicale élective en décubitus dorsal sous anesthésie. intrarachidienne ont été inclus dans cette étude randomisée en double insu. Le FSC a été mesuré en continu par deux sondes fixées l'une à la cuisse (zone avec bloc sympathique) et l'autre sur l'avantbras (zone sans bloc sympathique). Les valeurs de FSC ont été enregistrées après l'anesthésie rachidienne (valeur contrôle), puis après l'injection i.v. dè phénylephrine (10 patients) ou d'éphedrine (10 patients) pour corriger une hypotension définie comme une chute de 20 mmHg de la pression artérielle systolique. Les variations de FSC exprimées en pourcentage de la valeur contrôle moyenne (+/- écart type) ont été analysées par le test t de Student. Résultats :Les données démographiques des patients et le niveau sensitif induit par l'anesthésie rachidienne sont similaires dans les deux groupes. Aux doses utilisées, seule l'éphedrine restaure la pression artérielle aux valeurs précédant l'anesthésie rachidienne. La phénylephrine augmente le FSC de l'avant-bras de 44% (+/- 79%) et de la cuisse de 34% (+/-24%), alors que l'éphedrine diminue le débit sanguin cutané de l'avant-bras de 16% (+/- 15%) et de la cuisse de 22% (+/-11%). Conclusion : L'injection intraveineuse de phénylephrine et d'éphedrine ont des effets opposés sur le flux sanguin cutané, et cette réponse n'est pas modifiée par le bloc sympathique.. Cette différence peut s'expliquer par la distribution des sous-types de récepteurs adrénergiques alpha et leur prédominance relative dans les veines et les artères de différents diamètres perfusant le tissu sous-cutané et la peau. L'éphedrine, èn raison de sa meilleure efficacité pour traiter les épisodes d'hypotension artérielle après anesthésie intrarachidienne devrait être préféré à la phénylephrine, leurs effets opposés sur le flux sanguin cutané n'étant pas pertinents en pratique clinique. SUMMARY Background: Phenylephrine or ephedrine is routinely used to correct hypotensive episodes fallowing spinal anaesthesia (SA). The influence of these two vasopressors on skin blood flow (SBF) has not yet been described. We have therefore evaluated the effects of an i.v. bolus of 75 µg phenylephrine or 7.5 mg of ephedrine on SBF measured by laser Doppler flowmetry during sympathetic blockade induced by SA. Methods: With Ethical Committee approval and written consent, 20 patients scheduled for elective procedures in supine position under SA were enrolled in this double-blind randomized study. SBF was measured continuously by two probes fixed at the thigh (area with sympathic blockade) and forearm level (area without sympathic blockade) respectively. SBF values were recorded after SA (control values) and then after a bolus administration of phenylephriné (n=10) or ephedrine (n=10) when systolic blood pressure decreased by 20 mmHg. Changes were expressed as percentage of control SBF values and analysed by Student's paired t-test. Results: Patient characteristics and dermatomal sensory levels were similar in both groups. Phenylephrine increases mean SBF at the forearm level by 44% (79%) [mean (SD)j and at the thigh by 34% (24%). Ephedrine decreases SBF at the forearm level by 16% (15%) and at the thigh by 22% (il%). Ephedrine bolus restores arterial blood pressure to pre-anaesthesia values, whereas phenylephrine does not. Conclusion: Administratión of phenylephrine and ephedrine has opposite effects on skin blood flow and sympathetic blockade does not modify this response. These findings could be explained by the distribution of the alpha-adrenoréceptor subtypes and their relative predominance among veins and arteries of different size perfusing the subcutaneous tissue and the skin. Ephedrine, due to its better efficacy to correct hypotensive episodes following SA, should be preferred, to phenylephrine, their opposite effects on SBF being not relevant for clinical practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Vacuum-assisted closure (VAC) has become the preferred modality to treat many complex wounds but could be further improved by methods that minimize bleeding and facilitate wound epithelialization. Short fiber poly-N-acetyl glucosamine nanofibers (sNAG) are effective hemostatic agents that activate platelets and facilitate wound epithelialization. We hypothesized that sNAG used in combination with the VAC device could be synergistic in promoting wound healing while minimizing the risk of bleeding. METHODS: Membranes consisting entirely of sNAG nanofibers were applied immediately to dorsal excisional wounds of db/db mice followed by application of the VAC device. Wound healing kinetics, angiogenesis, and wound-related growth factor expression were measured. RESULTS: The application of sNAG membranes to wounds 24 hours before application of the VAC device was associated with a significant activation of wounds (expression of PDGF, TGFβ, EGF), superior granulation tissue formation rich in Collagen I as well as superior wound epithelialization (8.6% ± 0.3% vs. 1.8% ± 1.1% of initial wound size) and wound contraction. CONCLUSIONS: The application of sNAG fiber-containing membranes before the application of the polyurethane foam interface of VAC devices leads to superior healing in db/db mice and represents a promising wound healing adjunct that can also reduce the risk of bleeding complications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To identify clinical and pupillographic features of patients with a relative afferent pupillary defect (RAPD) without visual acuity or visual field loss caused by a lesion in the dorsal midbrain. DESIGN: Experimental study. PARTICIPANTS AND CONTROLS: Four patients with a dorsal midbrain lesion who had normal visual fields and a clinically detectable RAPD. METHODS: The pupil response from full-field and hemifield light stimulation over a range of light intensities was measured by computerized binocular pupillography. MAIN OUTCOME MEASURES: The mean of the direct and consensual pupil response to full-field and hemifield light stimulation was plotted as a function of stimulus light intensity. RESULTS: All 4 subjects showed decreased pupillographic responses at all intensities to full-field light stimulation in the eye with the clinical RAPD. The pupillographic responses to hemifield stimulation showed a homonymous pattern of deficit on the side ipsilateral to the RAPD, similar to that observed in a previously reported patient with an optic tract lesion. CONCLUSIONS: The basis of a midbrain RAPD is the nasal-temporal asymmetry of pupillomotor input that becomes manifest when a unilateral postchiasmal lesion interrupts homonymously paired fibers traveling in the contralateral optic tract or midbrain pathway to the pupillomotor center, respectively. The pupillographic characteristics of an RAPD resulting from a dorsal midbrain lesion thus resemble those of an RAPD resulting from a unilateral optic tract lesion, but without the homonymous visual field defect. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple organization indices have been used to predict the outcome of stepwise catheter ablation in long-standing persistent atrial fibrillation (AF), however with limited success. Our study aims at developinginnovative organization indices from baseline ECG (i.e. during the procedure, before ablation) in orderto identify the site of AF termination by catheter ablation. Seventeen consecutive male patients (age60 ± 5 years, AF duration 7 ± 5 years) underwent a stepwise catheter ablation. Chest lead V6 was placedin the back (V6b). QRST cancelation was performed from chest leads V1 to V6b. Using an innovativeadaptive harmonic frequency tracking, two measures of AF organization were computed to quantify theharmonics components of ECG activity: (1) the adaptive phase difference variance (APD) between theAF harmonic components as a measure of AF regularity, and (2) and adaptive organization index (AOI)evaluating the cyclicity of the AF oscillations. Both adaptive indices were compared to indices computedusing a time-invariant approach: (1) ECG AF cycle length (AFCL), (2) the spectrum based organizationindex (OI), and (3) the time-invariant phase difference TIPD. Long-standing persistent AF was terminatedinto sinus rhythm or atrial tachycardia in 13/17 patients during stepwise ablation, 11 during left atriumablation (left terminated patients - LT), 2 during the right atrium ablation (right terminated patients -RT), and 4 were non terminated (NT) and required electrical cardioversion. Our findings showed that LTpatients were best separated from RT/NT before ablation by the duration of sustained AF and by AOI onchest lead V1 and APD from the dorsal lead V6b as compared to ECG AFCL, OI and TIPD, respectively. Ourresults suggest that adaptive measures of AF organization computed before ablation perform better thantime-invariant based indices for identifying patients whose AF will terminate during ablation within theleft atrium. These findings are indicative of a higher baseline organization in these patients that could beused to select candidates for the termination of AF by stepwise catheter ablation.© 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ripglut1;glut2-/- mice have no endogenous glucose transporter type 2 (glut2) gene expression but rescue glucose-regulated insulin secretion. Control of glucagon plasma levels is, however, abnormal, with fed hyperglucagonemia and insensitivity to physiological hypo- or hyperglycemia, indicating that GLUT2-dependent sensors control glucagon secretion. Here, we evaluated whether these sensors were located centrally and whether GLUT2 was expressed in glial cells or in neurons. We showed that ripglut1;glut2-/- mice failed to increase plasma glucagon levels following glucoprivation induced either by i.p. or intracerebroventricular 2-deoxy-D-glucose injections. This was accompanied by failure of 2-deoxy-D-glucose injections to activate c-Fos-like immunoreactivity in the nucleus of the tractus solitarius and the dorsal motor nucleus of the vagus. When glut2 was expressed by transgenesis in glial cells but not in neurons of ripglut1;glut2-/- mice, stimulated glucagon secretion was restored as was c-Fos-like immunoreactive labeling in the brainstem. When ripglut1;glut2-/- mice were backcrossed into the C57BL/6 genetic background, fed plasma glucagon levels were also elevated due to abnormal autonomic input to the alpha cells; glucagon secretion was, however, stimulated by hypoglycemic stimuli to levels similar to those in control mice. These studies identify the existence of central glucose sensors requiring glut2 expression in glial cells and therefore functional coupling between glial cells and neurons. These sensors may be activated at different glycemic levels depending on the genetic background.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While the morphological and electrophysiological changes underlying diabetic peripheral neuropathy (DPN) are relatively well described, the involved molecular mechanisms remain poorly understood. In this study, we investigated whether phenotypic changes associated with early DPN are correlated with transcriptional alterations in the neuronal (dorsal root ganglia [DRG]) or the glial (endoneurium) compartments of the peripheral nerve. We used Ins2(Akita/+) mice to study transcriptional changes underlying the onset of DPN in type 1 diabetes mellitus (DM). Weight, blood glucose and motor nerve conduction velocity (MNCV) were measured in Ins2(Akita/+) and control mice during the first three months of life in order to determine the onset of DPN. Based on this phenotypic characterization, we performed gene expression profiling using sciatic nerve endoneurium and DRG isolated from pre-symptomatic and early symptomatic Ins2(Akita/+) mice and sex-matched littermate controls. Our phenotypic analysis of Ins2(Akita/+) mice revealed that DPN, as measured by reduced MNCV, is detectable in affected animals already one week after the onset of hyperglycemia. Surprisingly, the onset of DPN was not associated with any major persistent changes in gene expression profiles in either sciatic nerve endoneurium or DRG. Our data thus demonstrated that the transcriptional programs in both endoneurial and neuronal compartments of the peripheral nerve are relatively resistant to the onset of hyperglycemia and hypoinsulinemia suggesting that either minor transcriptional alterations or changes on the proteomic level are responsible for the functional deficits associated with the onset of DPN in type 1 DM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: Photodynamic therapy (PDT) affects vascular barrier function and thus increases vessel permeability. This phenomenon may be exploited to facilitate targeted drug delivery and may lead to a new clinical application of photodynamic therapy. Here, we investigate the role of leukocyte recruitment for PDT-induced vascular permeabilization. STUDY DESIGN/MATERIAL AND METHODS: Fluorescein isothiocyanate dextran (FITC-D, 2,000 kDa) was injected intravenously 120 minutes after focal PDT on striated muscle in nude mice bearing dorsal skinfold chambers (Visudyne® 800 µg/kg, fluence rate 300 mW/cm2 , light dose of 200 J/cm2). Leukocyte interaction with endothelial cells was inhibited by antibodies functionally blocking adhesion molecules ("MABS-PDT" group, n = 5); control animals had PDT but no antibody injection (group "PDT", n = 7). By intravital microscopy, we monitored leukocyte rolling and sticking in real-time before, 90 and 180 minutes after PDT. The extravasation of FITC-D from striated muscle vessels into the interstitial space was determined in vivo during 45 minutes to assess treatment-induced alterations of vascular permeability. RESULTS: PDT significantly increased the recruitment of leukocytes and enhanced the leakage of FITC-D. Neutralization of adhesion molecules before PDT suppressed the rolling of leukocytes along the venular endothelium and significantly reduced the extravasation of FITC-D as compared to control animals (156 ± 27 vs. 11 ± 2 (mean ± SEM, number of WBC/30 seconds mm vessel circumference; P < 0.05) at 90 minutes after PDT and 194 ± 21 vs. 14 ± 4 at 180 minutes after PDT). In contrast, leukocyte sticking was not downregulated by the antibody treatment. CONCLUSION: Leukocyte recruitment plays an essential role in the permeability-enhancing effect of PDT.