158 resultados para testis size
Resumo:
Pontryagin's maximum principle from optimal control theory is used to find the optimal allocation of energy between growth and reproduction when lifespan may be finite and the trade-off between growth and reproduction is linear. Analyses of the optimal allocation problem to date have generally yielded bang-bang solutions, i.e. determinate growth: life-histories in which growth is followed by reproduction, with no intermediate phase of simultaneous reproduction and growth. Here we show that an intermediate strategy (indeterminate growth) can be selected for if the rates of production and mortality either both increase or both decrease with increasing body size, this arises as a singular solution to the problem. Our conclusion is that indeterminate growth is optimal in more cases than was previously realized. The relevance of our results to natural situations is discussed.
Resumo:
Critical size at which metamorphosis is initiated represents an important checkpoint in insect development. Here, we use experimental evolution in Drosophila melanogaster to test the long-standing hypothesis that larval malnutrition should favour a smaller critical size. We report that six fly populations subject to 112 generations of laboratory natural selection on an extremely poor larval food evolved an 18% smaller critical size (compared to six unselected control populations). Thus, even though critical size is not plastic with respect to nutrition, smaller critical size can evolve as an adaptation to nutritional stress. We also demonstrate that this reduction in critical size (rather than differences in growth rate) mediates a trade-off in body weight that the selected populations experience on standard food, on which they show a 15-17% smaller adult body weight. This illustrates how developmental mechanisms that control life history may shape constraints and trade-offs in life history evolution.
Resumo:
Les cancer-testis antigènes appartiennent à la famille des antigènes tumoraux spécifiques. Ils ont montré un pouvoir immunogène chez les patients porteurs de différents cancers. En effet, ils stimulent sélectivement les lymphocytes cytotoxiques, et leur expression spécifique dans les tissus tumoraux en fait une cible idéale pour une vaccination antitumorale. Le but de cette étude est d'identifier l'expression de certains de ces antigènes, d'analyser leur valeur pronostique et de déterminer la meilleure cible antigénique pour permettre une immunothérapie spécifique dans les carcinomes épidermoïdes des voies aérodigestives supérieures. Le profil et le taux d'expression de 12 cancer-testis antigènes (MAGE-A1, MAGE-A3, MAGE-A4, MAGEA10, MAGE-C2, NY-ESO-1, LAGE-1, SSX-2, SSX-4, BAGE, GAGE-1/2, GAGE-3/4) et de 3 autres antigènes tumoraux spécifiques (PRAME, HERV-K-MEL, NA-17A) ont été évalués par RT-PCR sur 57 échantillons de cancers ORL primaires. Les paramètres tumoraux et cliniques ont été prospectivement collectés afin de corréler ces données avec le résultat de nos investigations immunobiologiques. Quatre-vingt-huit pour cent des tumeurs expriment au moins 1 antigène. Une co-expression de 3 gènes ou plus est détectée chez 59% des patients. MAGE-A4 (60%), MAGE-A3 (51%), PRAME (49%) et HERV-K-MEL (42%) sont les gènes le plus fréquemment exprimés. Ils sont totalement absents des muqueuses saines avoisinantes. La présence de MAGE-A et NY-ESO-1 à la surface des cellules a été vérifiée par immunohistochimie. Nos analyses statistiques ont permis d'identifier une diminution de la survie liée au cancer chez les patients porteurs d'une tumeur exprimant de multiples cancer-testis antigènes et notamment MAGE-A4 dont l'expression indépendante d'autres éléments cliniques s'associe statistiquement à un taux de survie diminué. Nos résultats ont permis d'identifier un rôle pronostique de l'expression des gènes associés aux tumeurs dont l'expression est apparemment liée à un phénotype de malignité plus élevé. Cette constatation, corroborée par l'identification parallèle d'un infiltrat lymphocytaire spécifique confirme l'utilité potentielle de certains cancer-testis antigènes comme cible pour une immunothérapie ciblée dans les carcinomes des voies aérodigestives supérieures
Resumo:
Oxygen consumption of collagenase-liberated rat adipocytes was measured by two different techniques: a microspectrophotometric method using hemoglobin as indicator of respiration and a technique using the oxygen electrode. These two completely different techniques gave similar values for oxygen consumption. With the spectrophotometric method, the oxygen consumption of single fat cells was determined. A close positive correlation (r = greater than 0.90) between oxygen consumption and fat cell size was observed in each tissue examined. With the oxygen electrode technique, oxygen consumption of adipocyte suspensions from young (40 days, 180 g) and old (90 days, 480 g) rats was examined. Fat cells of the suspensions were separated into classes of different size by a flotation technique. A significant positive correlation between fat cell size and oxygen consumption was observed in both young (r = 0.88) and old (r = 0.95) rats. However, the slope was much steeper in young rats. At a cell weight of 0.1 microgram the oxygen consumption was 0.364 and 0.086 microL O2/10(6) cells/min-1 in young and old rats, respectively. In the literature, a number of separate metabolic pathways have been found to be related positively to fat cell size and negatively to age. We conclude that these scattered metabolic observations are in agreement with integrated data on energy expenditure as evaluated from oxygen consumption. Estimations of the energy expenditure of adipose tissue indicates that this tissue is responsible for about 1% and 0.5% of the total energy expenditure in young and old rats, respectively.
Resumo:
Introduction: Several methods have already been proposed to improve the mobility of reversed prostheses (lateral or inferior displacement, increase of the glenosphere size). However, the effect of these design changes have only been evaluated on the maximal range of motion and were not related to activities of daily living (ADL). Our aim was thus to measure the effect of these design changes and to relate it to 4 typical ADL. Methods: CT data were used to reconstruct a accurate geometric model of the scapula and humerus. The Aequalis reversed prosthesis (Tornier) was used. The mobility of a healthy shoulder was compared to the mobility of 4 different reversed designs: 36 and 42 mm glenospheres diameters, inferior (4 mm) and lateral (3.2 mm) glenospheres displacements. The complete mobility map of the prosthesis was compared to kinematics measurement on healthy subjects for 4 ADL: 1) hand to contra lateral shoulder, 2) hand to mouth, 3) combing hair, 4) hand to back pocket. The results are presented as percentage of the allowed movement of the prosthestic shouder relative to the healthy shoulder, considered as the control group. Results: None of the tested designs allowed to recover a full mobility. The differences of allowed range of motion among each prosthetic designs appeared mainly in two of the 4 movements: hand to back pocket and hand to contra lateral shoulder. For the hand to back pocket, the 36 had the lowest mobility range, particularly for the last third of the movement. The 42 appeared to be a good compromise for all ADL activities. Conclusion: Reverse shoulder prostheses does not allow to recover a full range of motion compared to healthy shoulders, even for ADL. The present study allowed to obtain a complete 3D mobility map for several glenosphere positions and sizes, and to relate it to typical ADL. We mainly observed an improved mobility with inferior displacement and increased glenosphere size. We would suggest to use larger glenosphere, whenever it is possible.
Resumo:
One of the key challenges in the field of nanoparticle (NP) analysis is in producing reliable and reproducible characterisation data for nanomaterials. This study looks at the reproducibility using a relatively new, but rapidly adopted, technique, Nanoparticle Tracking Analysis (NTA) on a range of particle sizes and materials in several different media. It describes the protocol development and presents both the data and analysis of results obtained from 12 laboratories, mostly based in Europe, who are primarily QualityNano members. QualityNano is an EU FP7 funded Research Infrastructure that integrates 28 European analytical and experimental facilities in nanotechnology, medicine and natural sciences with the goal of developing and implementing best practice and quality in all aspects of nanosafety assessment. This study looks at both the development of the protocol and how this leads to highly reproducible results amongst participants. In this study, the parameter being measured is the modal particle size.
Resumo:
In this paper we propose a highly accurate approximation procedure for ruin probabilities in the classical collective risk model, which is based on a quadrature/rational approximation procedure proposed in [2]. For a certain class of claim size distributions (which contains the completely monotone distributions) we give a theoretical justification for the method. We also show that under weaker assumptions on the claim size distribution, the method may still perform reasonably well in some cases. This in particular provides an efficient alternative to a related method proposed in [3]. A number of numerical illustrations for the performance of this procedure is provided for both completely monotone and other types of random variables.
Resumo:
In addition to differences in protein-coding gene sequences, changes in expression resulting from mutations in regulatory sequences have long been hypothesized to be responsible for phenotypic differences between species. However, unlike comparison of genome sequences, few studies, generally restricted to pairwise comparisons of closely related mammalian species, have assessed between-species differences at the transcriptome level. They reported that gene expression evolves at different rates in various organs and in a pattern that is overall consistent with neutral models of evolution. In the first part of my thesis, I investigated the evolution of gene expression in therian mammals (i.e.7 placental and marsupials), based on microarray data from human, mouse and the gray short-tailed opossum (Monodelphis domestica). In addition to autosomal genes, a special focus was given to the evolution of X-linked genes. The therian X chromosome was recently shown to be younger than previously thought and to harbor a specific gene content (e.g., genes involved in brain or reproductive functions) that is thought to have been shaped by specific sex-related evolutionary forces. Sex chromosomes derive from ordinary autosomes and their differentiation led to the degeneration of the Y chromosome (in mammals) or W chromosome (in birds). Consequently, X- or Z-linked genes differ in gene dose between males and females such that the heterogametic sex has half the X/Z gene dose compared to the ancestral state. To cope with this dosage imbalance, mammals have been reported to have evolved mechanisms of dosage compensation.¦In the first project, I could first show that transcriptomes evolve at different rates in different organs. Out of the five tissues I investigated, the testis is the most rapidly evolving organ at the gene expression level while the brain has the most conserved transcriptome. Second, my analyses revealed that mammalian gene expression evolution is compatible with a neutral model, where the rates of change in gene expression levels is linked to the efficiency of purifying selection in a given lineage, which, in turn, is determined by the long-term effective population size in that lineage. Thus, the rate of DNA sequence evolution, which could be expected to determine the rate of regulatory sequence change, does not seem to be a major determinant of the rate of gene expression evolution. Thus, most gene expression changes seem to be (slightly) deleterious. Finally, X-linked genes seem to have experienced elevated rates of gene expression change during the early stage of X evolution. To further investigate the evolution of mammalian gene expression, we generated an extensive RNA-Seq gene expression dataset for nine mammalian species and a bird. The analyses of this dataset confirmed the patterns previously observed with microarrays and helped to significantly deepen our view on gene expression evolution.¦In a specific project based on these data, I sought to assess in detail patterns of evolution of dosage compensation in amniotes. My analyses revealed the absence of male to female dosage compensation in monotremes and its presence in marsupials and, in addition, confirmed patterns previously described for placental mammals and birds. I then assessed the global level of expression of X/Z chromosomes and contrasted this with its ancestral gene expression levels estimated from orthologous autosomal genes in species with non-homologous sex chromosomes. This analysis revealed a lack of up-regulation for placental mammals, the level of expression of X-linked genes being proportional to gene dose. Interestingly, the ancestral gene expression level was at least partially restored in marsupials as well as in the heterogametic sex of monotremes and birds. Finally, I investigated alternative mechanisms of dosage compensation and found that gene duplication did not seem to be a widespread mechanism to restore the ancestral gene dose. However, I could show that placental mammals have preferentially down-regulated autosomal genes interacting with X-linked genes which underwent gene expression decrease, and thus identified a novel alternative mechanism of dosage compensation.
Resumo:
Like many organisms, the cladoceran Simocephalus vetulus (Müller) continues to grow when reproducing, whereas the optimal strategy is to stop growing at maturity, and to invest all available production into reproduction thereafter. It has been proposed that a size constraint is responsible for the observed strategy (Perrin, Ruedi & Saiah, 1987), by preventing organisms from investing more than a given amount of energy into reproduction. This hypothesis is developed here and the two folowing prediction are derived: (1) the onset of reproduction should be independent of age and (2) the reproductive investement should be size-specific, thus independent of the productin rate. Both predictions are tested by rearing a clone of S.vetulus in a gradient of productivity. The results support the first prediction, but not the second one, so that the size-constraint hypothesis is disproved.
Resumo:
BACKGROUND: Suction-based wound healing devices with open-pore foam interfaces are widely used to treat complex tissue defects. The impact of changes in physicochemical parameters of the wound interfaces has not been investigated. METHODS: Full-thickness wounds in diabetic mice were treated with occlusive dressing or a suction device with a polyurethane foam interface varying in mean pore size diameter. Wound surface deformation on day 2 was measured on fixed tissues. Histologic cross-sections were analyzed for granulation tissue thickness (hematoxylin and eosin), myofibroblast density (α-smooth muscle actin), blood vessel density (platelet endothelial cell adhesion molecule-1), and cell proliferation (Ki67) on day 7. RESULTS: Polyurethane foam-induced wound surface deformation increased with polyurethane foam pore diameter: 15 percent (small pore size), 60 percent (medium pore size), and 150 percent (large pore size). The extent of wound strain correlated with granulation tissue thickness that increased 1.7-fold in small pore size foam-treated wounds, 2.5-fold in medium pore size foam-treated wounds, and 4.9-fold in large pore size foam-treated wounds (p < 0.05) compared with wounds treated with an occlusive dressing. All polyurethane foams increased the number of myofibroblasts over occlusive dressing, with maximal presence in large pore size foam-treated wounds compared with all other groups (p < 0.05). CONCLUSIONS: The pore size of the interface material of suction devices has a significant impact on the wound healing response. Larger pores increased wound surface strain, tissue growth, and transformation of contractile cells. Modification of the pore size is a powerful approach for meeting biological needs of specific wounds.
Resumo:
The relationship between sperm velocity and individual age, size, body condition and fluctuating asymmetry was investigated in Alpine whitefish Coregonus fatioi. The fish analysed belonged to one among several sympatric whitefish populations of Lake Thun, Switzerland, which are characterized by a high prevalence of gonad alterations. Therefore, sperm velocity data were also tested for a link between gonad deformation and sperm swimming speed. Sperm velocity was significantly lower in larger-grown individuals and in individuals of higher body condition. As expected, sperm velocity was higher in males with higher levels of fluctuating asymmetry, but it did not significantly vary with male age. Moreover, variation in sperm velocity was found to be significantly higher in individuals showing some types of gonad alterations but it did not significantly correlate with the presence of other types of alterations. (C) 2007 The Authors Journal compilation (C) 2007 The Fisheries Society of the British Isles.
Resumo:
OBJECTIVES: The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) at high bacterial densities. The effect of three inoculum sizes on the selection of resistance to vancomycin, daptomycin, and linezolid was investigated in methicillin-resistant Staphylococcus aureus (MRSA). METHODS: Low (10(4) CFU/ml), medium (10(6) CFU/ml), and high (10(8) CFU/ml) inocula of MRSA were exposed to twofold increasing concentrations of either drug during 15 days of cycling. MICs for low (MICL), medium (MICM), and high (MICH) inocula were determined daily. Conventional MICs were measured at days 1, 5, 10, and 15. Experiments were performed in triplicate. RESULTS: At the beginning of the experiment a small IE was observed for vancomycin (MICL=1 μg/ml, MICM=1-2 μg/ml, and MICH=2 μg/ml) and a significant IE for daptomycin (MICL=0.25 μg/ml, MICM=0.25-0.5 μg/ml, and MICH=2 μg/ml). Linezolid exhibited no IE at low and medium inocula (MICL=1 μg/ml and MICM=1-2 μg/ml), but with the high inoculum, concentrations up to 2,048 μg/ml did not fully inhibit visual growth. During cycling, increase of MIC was observed for all antibiotics. At day 15, MICL, MICM, and MICH of vancomycin were 2-4, 4-8, and 4-16 μg/ml and of daptomycin were 0.5-2, 8-128, and 64-256 μg/ml, respectively. MICL and MICM of linezolid were 1 and 2-4 μg/ml, respectively. Conventional MICs showed vancomycin and daptomycin selection of resistance since day 5 depending on the inocula. No selection of linezolid resistance was observed. CONCLUSIONS: Our results showed the importance of the inoculum size in the development of resistance. Measures aimed at lowering the inoculum at the site of infection should be used whenever possible in parallel to antimicrobial therapy.
Resumo:
The central structure of the symbiotic association between plants and arbuscular mycorrhizal (AM) fungi is the fungal arbuscule that delivers minerals to the plant. Our earlier transcriptome analyses identified two half-size ABCG transporters that displayed enhanced mRNA levels in mycorrhizal roots. We now show specific transcript accumulation in arbusculated cells of both genes during symbiosis. Presently, arbuscule-relevant factors from monocotyledons have not been reported. Mutation of either of the Oryza sativa (rice) ABCG transporters blocked arbuscule growth of different AM fungi at a small and stunted stage, recapitulating the phenotype of Medicago truncatula stunted arbuscule 1 and 2 (str1 and str2) mutants that are deficient in homologous ABCG genes. This phenotypic resemblance and phylogenetic analysis suggest functional conservation of STR1 and STR2 across the angiosperms. Malnutrition of the fungus underlying limited arbuscular growth was excluded by the absence of complementation of the str1 phenotype by wild-type nurse plants. Furthermore, plant AM signaling was found to be intact, as arbuscule-induced marker transcript accumulation was not affected in str1 mutants. Strigolactones have previously been hypothesized to operate as intracellular hyphal branching signals and possible substrates of STR1 and STR2. However, full arbuscule development in the strigolactone biosynthesis mutants d10 and d17 suggested strigolactones to be unlikely substrates of STR1/STR2. Interestingly, rice STR1 is associated with a cis-natural antisense transcript (antiSTR1). Analogous to STR1 and STR2, at the root cortex level, the antiSTR1 transcript is specifically detected in arbusculated cells, suggesting unexpected modes of STR1 regulation in rice.
Resumo:
Objective-Inflammation and proteolysis crucially contribute to myocardial ischemia and reperfusion injury. The extracellular matrix metalloproteinase inducer EMMPRIN (CD147) and its ligand cyclophilin A (CyPA) may be involved in both processes. The aim of the study was to characterize the role of the CD147 and CyPA interplay in myocardial ischemia/reperfusion (I/R) injury.Methods and Results-Immunohistochemistry showed enhanced expression of CD147 and CyPA in myocardial sections from human autopsies of patients who had died from acute myocardial infarction and from mice at 24 hours after I/R. At 24 hours and 7 days after I/R, the infarct size was reduced in CD147(+/-) mice vs CD147(+/+) mice (C57Bl/6), in mice (C57Bl/6) treated with monoclonal antibody anti-CD147 vs control monoclonal antibody, and in CyPA(-/-) mice vs CyPA(+/+) mice (129S6/SvEv), all of which are associated with reduced monocyte and neutrophil recruitment at 24 hours and with a preserved systolic function at 7 days. The combination of CyPA(-/-) mice with anti-CD147 treatment did not yield further protection compared with either inhibition strategy alone. In vitro, treatment with CyPA induced monocyte chemotaxis in a CD147-and phosphatidylinositol 3-kinase-dependent manner and induced monocyte rolling and adhesion to endothelium (human umbilical vein endothelial cells) under flow in a CD147-dependent manner.Conclusion-CD147 and its ligand CyPA are inflammatory mediators after myocardial ischemia and reperfusion and represent potential targets to prevent myocardial I/R injury.
Resumo:
GLUTX1 or GLUT8 is a newly characterized glucose transporter isoform that is expressed at high levels in the testis and brain and at lower levels in several other tissues. Its expression was mapped in the testis and brain by using specific antibodies. In the testis, immunoreactivity was expressed in differentiating spermatocytes of type 1 stage but undetectable in mature spermatozoa. In the brain, GLUTX1 distribution was selective and localized to a variety of structures, mainly archi- and paleocortex. It was found in hippocampal and dentate gyrus neurons as well as amygdala and primary olfactory cortex. In these neurons, its location was close to the plasma membrane of cell bodies and sometimes in proximal dendrites. High GLUTX1 levels were detected in the hypothalamus, supraoptic nucleus, median eminence, and the posterior pituitary. Neurons of these areas synthesize and secrete vasopressin and oxytocin. As shown by double immunofluorescence microscopy and immunogold labeling, GLUTX1 was expressed only in vasopressin neurons. By immunogold labeling of ultrathin cryosections microscopy, GLUTX1 was identified in dense core vesicles of synaptic nerve endings of the supraoptic nucleus and secretory granules of the vasopressin positive neurons. This localization suggests an involvement of GLUTX1 both in specific neuron function and endocrine mechanisms.