132 resultados para satellite behavior


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with the early-onset Alzheimer's disease P117L mutation in the presenilin-1 gene (PS-1) present pathological hallmarks in the hippocampus, the frontal cortex and the basal ganglia. In the present work we determined by immunohistochemistry which brain regions were injured in the transgenic PS-1 P117L mice, in comparison to their littermates, the B6D2 mice. Furthermore, as these regions are involved in novelty detection, we investigated the behavior of these mice in tests for object and place novelty recognition. Limited numbers of senile plaques and neurofibrillary tangles were detected in aged PS-1 P117L mice in the CA1 only, indicating that the disease is restrained to an initial neuropathological stage. Western blots showed a change in PSD-95 expression (p=0.03), not in NR2A subunit, NR2B subunit and synaptophysin expressions in the frontal cortex, suggesting specific synaptic alterations. The behavioral tests repeatedly revealed, despite a non-significant preference for object or place novelty, maladaptive exploratory behavior of the PS-1 P117L mice in novel environmental conditions, not due to locomotor problems. These mice, unlike the B6D2 mice, were less inhibited to visit the center of the cages (p=0.01) and they continued to move excessively in the presence of a displaced object (p=0.021). Overall, the PS-1 P117L mice appear to be in an initial Alzheimer's disease-like neuropathological stage, and they showed a lack of reaction toward novel environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilization behavior (UB) consists of reaching out and using objects in the environment in an automatic manner and out of context. This behavior has been correlated to frontal lobe dysfunction, especially of the right hemisphere. We describe a 60-year-old woman, affected by a glioblastoma located in the right frontal region, who presented with intermittent UB of the mobile phone as the main clinical manifestation of partial complex status epilepticus. Video/EEG studies showed a striking correlation between mobile phone utilization and ictal epileptic activity. Clinical and EEG findings were markedly reduced after the introduction of antiepileptic drugs. This case study suggests that UB may be added to the symptoms described for partial seizures originating from frontal areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Patient behavior accounts for half or more of the variance in health, disease, mortality and treatment outcome and costs. Counseling using motivational interviewing (MI) effectively improves the substance use and medical compliance behavior of patients. Medical training should include substantial focus on this key issue of health promotion. The objective of the study is to test the efficacy of teaching MI to medical students. METHODS: Thirteen fourth-year medical students volunteered to participate. Seven days before and after an 8-hour interactive MI training workshop, each student performed a video-recorded interview with two standardized patients: a 60 year-old alcohol dependent female consulting a primary care physician for the first time about fatigue and depression symptoms; and a 50 year-old male cigarette smoker hospitalized for myocardial infarction. All 52 videos (13 students×2 interviews before and after training) were independently coded by two blinded clinicians using the Motivational Interviewing Training Integrity (MITI, 3.0). MITI scores consist of global spirit (Evocation, Collaboration, Autonomy/Support), global Empathy and Direction, and behavior count summary scores (% Open questions, Reflection to question ratio, % Complex reflections, % MI-adherent behaviors). A "beginning proficiency" threshold (BPT) is defined for each of these 9 scores. The proportion of students reaching BPT before and after training was compared using McNemar exact tests. Inter-rater reliability was evaluated by comparing double coding, and test-retest analyses were conducted on a sub-sample of 10 consecutive interviews by each coder. Weighted Kappas were used for global rating scales and intra-class correlations (ICC) were computed for behavior count summary scores. RESULTS: The percent of counselors reaching BPT before and after MI training increased significantly for Evocation (15% to 65%, p<.001), Collaboration (27% to 77%, p=.001), Autonomy/Support (15% to 54%, p=.006), and % Open questions (4% to 38%, p=.004). Proportions increased, but were not statistically significant for Empathy (38% to 58%, p=.18), Reflection to question ratio (0% to 15%, p=.12), % Complex reflection (35% to 54%, p=.23), and % MI-adherent behaviors (8% to 15%, p=.69). There was virtually no change for the Direction scale (92% to 88%, p=1.00). The reliability analyses produced mixed results. Weighted kappas for inter-rater reliability ranged from .14 for Direction to .51 for Collaboration, and from .27 for Direction to .80 for Empathy for test-retest. ICCs ranged from .20 for Complex reflections to .89 for Open questions (inter-rater), and from .67 for Complex reflections to .99 for Reflection to question ratio (test-retest). CONCLUSION: This pilot study indicates that a single 8-hour training in motivational interviewing for voluntary fourth-year medical students results in significant improvement of some MI skills. A larger sample of randomly selected medical students observed over longer periods should be studied to test if MI training generalizes to medical students. Inter-rater reliability and test-retest findings indicate a need for caution when interpreting the present results, as well as for more intensive training to help appropriately capture more dimensions of the process in future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances--including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS) scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space. However, not much is known about the relationship between temporal perceptual aberration, behavior and brain activity. To this aim, we composed a temporal Perceptual Aberration Scale (tPAS) similar to the traditional PAS. Testing on 170 participants suggested similar performance for PAS and tPAS. We then correlated tPAS and PAS scores to participants' performance and neural activity in a task of self-projection in time. tPAS scores correlated positively with reaction times across task conditions, as did PAS scores. Evoked potential mapping and electrical neuroimaging showed self-projection in time to recruit a network of brain regions at the left anterior temporal cortex, right temporo-parietal junction, and occipito-temporal cortex, and duration of activation in this network positively correlated with tPAS and PAS scores. These data demonstrate that schizotypal perceptual aberrations of both time and space, as reflected by tPAS and PAS scores, are positively correlated with performance and brain activation during self-projection in time in healthy individuals along the schizophrenia spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: This descriptive article illustrates the application of Global Positioning System (GPS) professional receivers in the field of locomotion studies. The technological challenge was to assess the external mechanical work in outdoor walking. METHODS: Five subjects walked five times during 5 min on an athletic track at different imposed stride frequency (from 70-130 steps x min(-1)). A differential GPS system (carrier phase analysis) measured the variation of the position of the trunk at 5 Hz. A portable indirect calorimeter recorded breath-by-breath energy expenditure. RESULTS: For a walking speed of 1.05 +/- 0.11 m x s(-1), the vertical lift of the trunk (43 +/- 14 mm) induced a power of 46.0 +/- 20.4 W. The average speed variation per step (0.15 +/- 0.03 m x s(-1)) produced a kinetic power of 16.9 +/- 7.2 W. As compared with commonly admitted values, the energy exchange (recovery) between the two energy components was low (39.1 +/- 10.0%), which induced an overestimated mechanical power (38.9 +/- 18.3 W or 0.60 W x kg(-1) body mass) and a high net mechanical efficiency (26.9 +/- 5.8%). CONCLUSION: We assumed that the cause of the overestimation was an unwanted oscillation of the GPS antenna. It is concluded that GPS (in phase mode) is now able to record small body movements during human locomotion, and constitutes a promising tool for gait analysis of outdoor unrestrained walking. However, the design of the receiver and the antenna must be adapted to human experiments and a thorough validation study remains to be conducted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the recent avian influenza and pandemic (H1N1) 2009 outbreaks, public trust in medical and political authorities is emerging as a new predictor of compliance with officially recommended protection measures. In a two-wave longitudinal survey of adults in French-speaking Switzerland, trust in medical organizations longitudinally predicted actual vaccination status 6 months later, during the pandemic (H1N1) 2009 vaccination campaign. No other variables explained significant amounts of variance. Trust in medical organizations also predicted perceived efficacy of officially recommended protection measures (getting vaccinated, washing hands, wearing a mask, sneezing into the elbow), as did beliefs about health issues (perceived vulnerability to disease, threat perceptions). These findings show that in the case of emerging infectious diseases, actual behavior and perceived efficacy of protection measures may have different antecedents. Moreover, they suggest that public trust is a crucial determinant of vaccination behavior and underscore the practical importance of managing trust in disease prevention campaigns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: C57/Bl6, Cpfl1-/- (Cone photoreceptors function loss 1; pure rod function), Gnat1alpha-/- (rod alpha-transducin; pure cone function) and Rpe65-/-;Rho-/- double knock-out mice were studied in order to distinguish the respective contributions of the different photoreceptor (PR) systems that enable light perception and mediate a visual reflex in adult Rpe65-/- mice using a simple behavioural procedure. Methods: Visual function was estimated using a rotating automatized optomotor drum covered with vertical black and white stripes at spatial frequencies of 0.025 to 0.5 cycles per degree (cpd) in both photopic and scotopic conditions. To evaluate the contribution as well as the light intensity threshold of each PR system, we tested the mouse strains with different luminances. Results: Stripe rotation elicits head movements in wild-type (WT) animals in photopic and scotopic conditions depending on the spatial frequency, whereas Cpfl1-/- mice show a reduced activity in the photopic condition and Gnat1alpha-/- mice an almost absent response in the scotopic condition. Interestingly, a robust visual response is obtained with Rpe65-/- knockout mice at 0.075 cpd and 0.1 cpd in the photopic condition. The residual rod function in the Rpe65-/- animals was demonstrated by testing Rpe65-/-;Rho-/- mice that present no response in photopic conditions. Conclusions: The optomotor test is a simple method to estimate the visual function, and to evaluate the respective contributions of rod and cone systems. Using this test, we demonstrate that in Rpe65-/- mice, devoid of functional cones and of detectable 11-cis-retinal protein, rods mimic in part the cone function by mediating vision in photopic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activity monitors based on accelerometry are used to predict the speed and energy cost of walking at 0% slope, but not at other inclinations. Parallel measurements of body accelerations and altitude variation were studied to determine whether walking speed prediction could be improved. Fourteen subjects walked twice along a 1.3 km circuit with substantial slope variations (-17% to +17%). The parameters recorded were body acceleration using a uni-axial accelerometer, altitude variation using differential barometry, and walking speed using satellite positioning (DGPS). Linear regressions were calculated between acceleration and walking speed, and between acceleration/altitude and walking speed. These predictive models, calculated using the data from the first circuit run, were used to predict speed during the second circuit. Finally the predicted velocity was compared with the measured one. The result was that acceleration alone failed to predict speed (mean r = 0.4). Adding altitude variation improved the prediction (mean r = 0.7). With regard to the altitude/acceleration-speed relationship, substantial inter-individual variation was found. It is concluded that accelerometry, combined with altitude measurement, can assess position variations of humans provided inter-individual variation is taken into account. It is also confirmed that DGPS can be used for outdoor walking speed measurements, opening up new perspectives in the field of biomechanics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phasic activation of dopaminergic neurons is associated with reward-predicting cues and supports learning during behavioral adaptation. While noncontingent activation of dopaminergic neurons in the ventral tegmental are (VTA) is sufficient for passive behavioral conditioning, it remains unknown whether the phasic dopaminergic signal is truly reinforcing. In this study, we first targeted the expression of channelrhodopsin-2 to dopaminergic neurons of the VTA and optimized optogenetically evoked dopamine transients. Second, we showed that phasic activation of dopaminergic neurons in freely moving mice causally enhances positive reinforcing actions in a food-seeking operant task. Interestingly, such effect was not found in the absence of food reward. We further found that phasic activation of dopaminergic neurons is sufficient to reactivate previously extinguished food-seeking behavior in the absence of external cues. This was also confirmed using a single-session reversal paradigm. Collectively, these data suggest that activation of dopaminergic neurons facilitates the development of positive reinforcement during reward-seeking and behavioral flexibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The amygdala is a group of nuclei in the temporal lobe of the brain that plays a crucial role in anxiety and fear behavior. Sensory information converges in the basolateral and lateral nuclei of the amygdala, which have been the first regions in the brain where the acquisition of new (fear) memories has been associated with long term changes in synaptic transmission. These nuclei, in turn, project to the central nucleus of the amygdala. The central amygdala, through its extensive projections to numerous nuclei in the midbrain and brainstem, plays a pivotal role in the orchestration of the rapid autonomic and endocrine fear responses. In the central amygdala a large number of neuropeptides and receptors is expressed, among which high levels of vasopressin and oxytocin receptors. Local injections of these peptides into the amygdala modulate several aspects of the autonomic fear reaction. Interestingly, their effects are opposing: vasopressin tends to enhance the fear reactions, whereas oxytocin has anxiolytic effects. In order to investigate the neurophysiological mechanisms that could underlie this opposing modulation of the fear behavior, we studied the effects of vasopressin and oxytocin on the neuronal activity in an acute brain slice preparation of the rat central amygdala. We first assessed the effects of vasopressin and oxytocin on the spontaneous activity of central amygdala neurons. Extracellular single unit recordings revealed two major populations of neurons: a majority of neurons was excited by vasopressin and inhibited by oxytocin, whereas other neurons were only excited by oxytocin receptor activation. The inhibitory effect of oxytocin could be reduced by the block of GABAergic transmission, whereas the excitatory effects of vasopressin and oxytocin were not affected. In a second step we identified the cellular mechanisms for the excitatory effects of both peptides as well as the morphological and biochemical mechanisms underlying the opposing effects, by using sharp electrode recordings together with intracellular labelings. We revealed that oxytocin-excited neurons are localized in the lateral part (CeL) whereas vasopressin excited cells are found in the medial part of the central amygdala (CeM). The tracing of the neuronal morphology showed that the axon collaterals of the oxytocin-excited neurons project from the CeL, far into the CeM. Combined immunohistochemical stainings indicated that these projections are GABAergic. In the third set of experiments we investigated the synaptic interactions between the two identified cell populations. Whole-cell patch-clamp recordings in the CeM revealed that the inhibitory effect of oxytocin was caused by the massive increase of inhibitory GABAergic currents, which was induced by the activation of CeL neurons. Finally, the effects of vasopressin and oxytocin on evoked activity were investigated. We found on the one hand, that the probability of evoking action potentials in the CeM by stimulating the basolateral amygdala afferents was enhanced under vasopressin, whereas it decreased under oxytocin. On the other hand, the impact of cortical afferents stimulation on the CeL neurons was enhanced by oxytocin application. Taken together, these findings have allowed us to develop a model, in which the opposing behavioral effects of vasopressin and oxytocin are caused by a selective activation of two distinct populations of neurons in the GABAergic network of the central amygdala. Our model could help to develop new anxiolytic treatments, which modulate simultaneously both receptor systems. By acting on a GABAergic network, such treatments can further be tuned by combinations with classical benzodiazepines. Résumé: L'amygdale est un groupe de noyaux cérébraux localisés dans le lobe temporal. Elle joue un rôle essentiel dans les comportements liés à la peur et l'anxiété. L'information issue des aires sensorielles converge vers les noyaux amygdaliens latéraux et basolatéraux, qui sont les projections vers différents noyaux du tronc cérébral et de l'hypothalamus, joue un rôle clef premières régions dans lesquelles il a été démontré que l'acquisition d'une nouvelle mémoire (de peur) était associée à des changements à long terme de la transmission synaptique. Ces noyaux envoient leurs projections sur l'amygdale centrale, qui à travers ses propres dans l'orchestration des réponses autonomes et endocrines de peur. Le contrôle de l'activité neuronale dans l'amygdale centrale module fortement la réaction de peur. Ainsi, un grand nombre de neuropeptides sont spécifiquement exprimés dans l'amygdale centrale et un bon nombre d'entre eux interfère dans la réaction de peur et d'anxiété. Chez les rats, une forte concentration de récepteurs à l'ocytocine et à la vasopressine est exprimée dans le noyau central, et l'injection de ces peptides dans l'amygdale influence différents aspects de la réaction viscérale associée à la peur. Il est intéressant de constater que ces peptides exercent des effets opposés. Ainsi, la vasopressine augmente la réaction de peur alors que l'ocytocine a un effet anxiolytique. Afin d'investiguer les mécanismes neurophysiologiques responsables de ces effets opposés, nous avons étudié l'effet de la vasopressine et de l'ocytocine sur l'activité neuronale de préparations de tranches de cerveau de rats contenant entre autres de l'amygdale centrale. Tout d'abord, notre intérêt s'est porté sur les effets de ces deux neuropeptides sur l'activité spontanée dans l'amygdale centrale. Des enregistrements extracellulaires ont révélé différentes populations de neurones ; une majorité était excitée par la vasopressine et inhibée par l'ocytocine ; d'autres étaient seulement excités par l'activation du récepteur à l'ocytocine. L'effet inhibiteur de l'ocytocine a pu être réduit par l'inhibition de la transmission GABAergique, alors que ses effets excitateurs n'étaient pas affectés. Dans un deuxième temps, nous avons identifié les mécanismes cellulaires responsables de l'effet excitateur de ces deux peptides et analysé les caractéristiques morphologiques et biochimiques des neurones affectés. Des enregistrements intracellulaires ont permis de localiser les neurones excités par l'ocytocine dans la partie latérale de l'amygdale centrale (CeL), et ceux excités par la vasopressine dans sa partie médiale (CeM). Le traçage morphologique des neurones a révélé que les collatérales axonales des cellules excitées par l'ocytocine projetaient du CeL loin dans le CeM. De plus, des colorations immuno-histochimiques ont révélé que ces projections étaient GABAergiques. Dans un troisième temps, nous avons étudié les interactions synaptiques entre ces deux populations de cellules. Les enregistrements en whole-cell patch-clamp dans le CeM ont démontré que les effets inhibiteurs de l'ocytocine résultaient de l'augmentation massive des courants GABAergique résultant de l'activation des neurones dans le CeL. Finalement, les effets de l'ocytocine et de la vasopressine sur l'activité évoquée ont été étudiés. Nous avons pu montrer que la probabilité d'évoquer un potentiel d'action dans le CeM, par stimulation de l'amygdale basolatérale, était augmentée sous l'effet de la vasopressine et diminuée sous l'action de l'ocytocine. Par contre, l'impact de la stimulation des afférences corticales sur les neurones du CeL était augmenté par l'application de l'ocytocine. L'ensemble de ces résultats nous a permis de développer un modèle dans lequel les effets comportementaux opposés de la vasopressine et de l'ocytocine sont causés par une activation sélective des deux différentes populations de neurones dans un réseau GABAergique. Un tel modèle pourrait mener au développement de nouveaux traitements anxiolytiques en modulant l'activité des deux récepteurs simultanément. En agissant sur un réseau GABAergique, les effets d'un tel traitement pourraient être rendus encore plus sélectifs en association avec des benzodiazépines classiques.