96 resultados para plant growth analysis
Resumo:
Treatment of bean cuttings with 4-chlororesorcinol (4-CR), known to increase the number of roots and extend their distribution, prevented the accumulation of free indol-3-yl-acetic acid (IAA) in the hypocotyls within 24 h after cutting preparation. In mung bean there was no change in the distribution (upper half vs. 1 ower half of the hypocotyl) of IAA within the hypocotyl as a result of the treatment. In bean cuttings the treatment with 4-CR prevented the accumulation of IAA in the bottom of the cutting. Oxidation of IAA as a measure of IAA oxidase activity in bean was enhanced appreciably by 4-chlororesorcinol. The level of abscisic acid in mung bean, on the other hand, remained 3-4 fold higher than in the control, yet still about 50% lower than the zero time level. In untreated mung bean cuttings the activity of peroxidase increased after cutting preparation. In contrast, the activity of peroxidase in 4-Cr-treated cuttings was consistently lower. In order to relate to the effect of exogenously applied auxin the level of peroxidase was measured also in indol-3-yl-butyric acid-treated cuttings. The overall peroxidase activity in IBA-treated cuttings was not affected. However, when assaying for the different isozymes the drop in peroxidase activity was most evident in the inducible basic isoperoxidases both in 4-CR and IBA treatments. It appears that the exposure to 4-CR exerts an effect that is similar to that of exogenously applied auxin, affecting the activity of basic peroxidases and enhancing the oxidation of endogenous IAA, thus allowing the organization of the primordia.
Resumo:
Résumé Les champignons endomycorhiziens arbusculaires (CEA) ont co-évolué avec les plantes terrestres depuis plus de 400 millions d'années. De nos jours, les CEA forment une symbiose avec les racines de la majorité des plantes terrestres. Les CEA sont écologiquement importants parce qu'ils influencent non seulement la croissance des plantes, mais aussi leur diversité. Les CEA sont des biotrophes obligatoires qui reçoivent leur énergie sous forme de glucides issus de la photosynthèse des plantes. En contrepartie, les CEA apportent à leurs hôtes du phospore. Les CEA croissent et se reproduisent clonalement en formant des hyphes et des spores. De plus, les CEA sont coenocytiques et multigénomiques; le cytoplasme d'un CEA contient des noyeaux génétiquement différents. De nombreuses études ont démontré que différentes espèces de CEA agissent différentiellement sur la croissance des plantes. Malgré une conscience de plus en plus forte de l'existence d'une variabilité intraspécifique, la question de savoir si les populations de CEA sont génétiquement variables a été largement négligée. Dans le Chapitre 2, j'ai cherché à savoir si une population de CEA provenant d'un seul champ possède une diversité génétique. Cette étude a mis en évidence une importante variation génétique et phénotypique au sein d'individus de la même population. Des différences au niveau de traits de croissance, héritables et liés à la valeur sélective, indiquent que la variation génétique observée entre isolats n'est pas entièrement neutre. Dans le Chapitre 3, je montre que les différences génétiques entre isolats de CEA d'une population provoquent de la variation dans la croissance des plantes. L'effet des isolats dépend des conditions environnementales et varie de bénéfique à parasitique. Dans le Chapitre 4, je montre que des traits de croissance de CEA varient significativement dans des environnements contrastés. J'ai détecté de fortes interactions entre différents génotypes de CEA et différentes espèces de plantes. Ceci suggère que dans un environnement hétérogène, la sélection pourrait localement favoriser différents génotypes de CEA, maintenant ainsi la diversité génétique dans la population. Les résultats de ce travail aident à mieux comprendre l'importance écologique de la variation intraspécifique des CEA. La possibilité de pouvoir cultiver des individus d'une population de CEA au laboratoire nous a permis une meilleure compréhension de la génétique de ces champignons. De plus, ce travail est une base pour de futures expériences visant à comprendre l'importance évolutive de la diversité intraspécifique des CEA. Abstract Arbuscular mycorrhizal fungi (A1VIF) have co-evolved with land plants -for over 400 million years. Today, AMF form symbioses with roots of most land plants and are ecologically important because they alter plant growth and affect plant diversity. AMF are obligate biotrophs, obtaining their energy in form of plant-derived photosynthates. In return,- they supply their host plants with phosphorous. These fungi grow and reproduce clonally by hyphae and spores. They are coenocytic and multigenomic, harbouring genetically different nuclei in a common cytoplasm. Many studies have shown different AMF species differentially alter plant growth. Despite the increasing awareness of intraspecific variability the question whether there is any genetic variation among different individuals of the same population has been largely neglected. In Chapter 2, we investigated whether there is genetic diversity in a field population of the AMF G. intraradices. This work revealed that large genetic and heritable phenotypic variation exists in this AMF population. Differences in fitness-related growth traits among isolates suggest that some of the observed genetic variation is not selectively neutral. In Chapter 3, we show that genetic differences among isolates from the same population also cause variation in plant growth. The isolate effects on plant growth depended on the environmental conditions and varied from beneficial to detrimental. In Chapter 4, fitnessrelated growth traits of genetically different isolates were significantly altered in contrasting environments. we detected strong AMF isolate by host species interacfions which suggests that in a heterogeneous environment selection could locally favour different AMF genotypes, thereby maintaining high genetic diversity in the population. The results of this work contribute to the understanding of the ecological importance of intraspecific diversity in AMF. The possibility of culturing individuals of an AMF field population under laboratory condition gave new insights into AMF genetics and lays a foundation for future studies to analyse the evolutionary significance of intraspecific genetic diversity in AMF.
Resumo:
A Casparian strip-bearing endodermis is a feature that has been invariably present in the roots of ferns and angiosperms for approximately 400 million years. As the innermost cortical layer that surrounds the central vasculature of roots, the endodermis acts as a barrier to the free diffusion of solutes from the soil into the stele. Based on an enormous body of anatomical and physiological work, the protective endodermal diffusion barrier is thought to be of major importance for many aspects of root biology, reaching from efficient water and nutrient transport to defense against soil-borne pathogens. Until recently, however, we were ignorant about the genes and mechanisms that drive the differentiation of this intricately structured barrier. Recent work in Arabidopsis has now identified the first major players in Casparian strip formation. A mechanistic understanding of endodermal differentiation will finally allow us to specifically interfere with endodermal barrier function and study the effects on plant growth and survival under various stress conditions. Here, I critically review the major findings and models related to endodermal structure and function from other plant species and assess them in light of recent molecular data from Arabidopsis, pointing out where the older, descriptive work can provide a framework and inspiration for further molecular dissection.
Resumo:
Development of the mutualistic arbuscular mycorrhiza (AM) symbiosis between most land plants and fungi of the Glomeromycota is regulated by phytohormones. The role of jasmonate (JA) in AM colonization has been investigated in the dicotyledons Medicago truncatula, tomato and Nicotiana attenuata and contradicting results have been obtained with respect to a neutral, promotive or inhibitory effect of JA on AM colonization. Furthermore, it is currently unknown whether JA plays a role in AM colonization of monocotyledonous roots. Therefore we examined whether JA biosynthesis is required for AM colonization of the monocot rice. To this end we employed the rice mutant constitutive photomorphogenesis 2 (cpm2), which is deficient in JA biosynthesis. Through a time course experiment the amount and morphology of fungal colonization did not differ between wild-type and cpm2 roots. Furthermore, no significant difference in the expression of AM marker genes was detected between wild type and cpm2. However, treatment of wild-type roots with 50 μM JA lead to a decrease of AM colonization and this was correlated with induction of the defense gene PR4. These results indicate that JA is not required for AM colonization of rice but high levels of JA in the roots suppress AM development likely through the induction of defense.
Resumo:
Plants must constantly adapt to a changing light environment in order to optimize energy conversion through the process of photosynthesis and to limit photodamage. In addition, plants use light cues for timing of key developmental transitions such as initiation of reproduction (transition to flowering). Plants are equipped with a battery of photoreceptors enabling them to sense a very broad light spectrum spanning from UV-B to far-red wavelength (280-750nm). In this review we briefly describe the different families of plant photosensory receptors and the mechanisms by which they transduce environmental information to influence numerous aspects of plant growth and development throughout their life cycle.
Resumo:
All plants are typically confronted to simultaneous biotic and abiotic stress throughout their life cycle. Low inorganic phosphate (Pi) is the most common nutrient deficiency limiting plant growth in natural and agricultural ecosystems while insect herbivory accounts for major losses in plant productivity and impacts on ecological and evolutionary changes in plant populations. Here we report that plants experiencing Pi deficiency induce the jasmonic acid (JA) pathway and enhance their defence against insect herbivory. The phol mutant is impaired in the translocation of Pi from roots to shoots and shows the typical symptoms associated with Pi deficiency, including high anthocyanin and poor shoot growth. These phol shoot phenotypes were significantly attenuated by blocking the JA biosynthesis or signalling pathways. Wounded phol leaves hyper-accumulated JA in comparison to wild type, leading to increased resistance against the generalist herbivore Spodoptera littoralis. Pi deficiency also triggered enhanced resistance to herbivory in wild-type Arabidopsis as well as tomato and tobacco, revealing that the link between Pi deficiency and JA-mediated herbivory resistance is conserved in a diversity of plants, including crops. We performed a phol suppressor screen to identify new components involved in the adaptation of plants to Pi deficiency. We report that the THO RNA TRANSCRIPTION AND EXPORT (THO/TREX) complex is a crucial component involved in modulating the Pi- deficiency response. Knockout mutants of at least three members of the THO/TREX complex, including TEX1, HPR1, and TH06, can suppress the phol shoot phenotype. Grafting experiments showed that loss of function of TEX1 only in the root was sufficient to suppress the reduced shoot growth phenotype of phol while maintaining low Pi contents. This indicates that TEX1 is involved in a long distance root-to-shoot signalling component of the Pi-deficiency response. We identified a small MYB-like transcription factor, RAD LIKE 3 (RL3), as a potential downstream target of the THO/TREX complex. RL3 expression is induced in phol mutants but attenuated in phol-7 texl-4 double mutants. Identical to knockout mutants of the THO/TREX complex, rl3 mutants can suppress the phol shoot phenotypes. Interestingly, RL3 is induced during Pi deficiency and is described in the literature as likely being mobile. It is therefore a promising new candidate involved in the root-to-shoot Pi-deficiency signalling response. Finally, we report that PHOl and its homologue PH01:H3 are involved in the co-regulation of Pi and zinc (Zn) homeostasis. PH01;H3 is up-regulated in response to Zn deficiency and, like PHOl, is expressed in the root vascular cylinder and localizes to the Golgi when expressed transiently in tobacco cells. The phol;h3 mutant accumulates more Pi as compared to wild-type when grown in Zn-deficient medium, but this increase is abolished in the phol phol;h3 double mutant. These results suggest that PH01;H3 restricts the PHOl-mediated root-to-shoot Pi transfer in responsé to Zn deficiency. Résumé Au cours de leur cycle de vie, toutes les plantes sont généralement confrontées à divers stress biotiques et abiotiques. La carence nutritionnelle la plus fréquente, limitant la croissance des plantes dans les écosystèmes naturels et agricoles, est la faible teneur en phosphate inorganique (Pi). Au niveau des stress biotiques, les insectes herbivores sont responsables de pertes majeures de rendement et ont un impact considérable sur les changements écologiques et évolutifs dans les populations des plantes. Au cours de ce travail, nous avons mis en évidence que les plantes en situation de carence en Pi induisent la voie de l'acide jasmonique (JA) et augmentent leur défense contre les insectes herbivores. Le mutant phol est déficient dans le transport du phosphate des racines aux feuilles et démontre les symptômes typiques associés à la carence, tels que la forte concentration en anthocyane et une faible croissance foliaire. Ces phénotypes du mutant phol sont significativement atténués lors d'un blocage de la voie de la biosynthèse ou des voies de signalisation du JA. La blessure des feuilles induit une hyper-accumulation de JA chez phol, résultant en une augmentation de la résistance contre l'herbivore généraliste Spodoptera littoralis. Outre Arabidopsis, la carence en Pi induit une résistance accrue aux insectes herbivores aussi chez la tomate et le tabac. Cette découverte révèle que le lien entre la carence en Pi et la résistance aux insectes herbivores via le JA est conservé dans différentes espèces végétales, y compris les plantes de grandes cultures. Nous avons effectué un crible du suppresseur de phol afin d'identifier de nouveaux acteurs impliqués dans l'adaptation de la plante à la carence en Pi. Nous rapportons que le complexe nommé THO RNA TRANSCRIPTION AND EXPORT (THO/TREX) est un élément crucial participant à la réponse des feuilles à la carence en Pi. Les mutations d'au moins trois des membres que composent le complexe THO/TREX, incluant TEX1, HPR1 et 77/06, peuvent supprimer le phénotype de phol. Des expériences de greffes ont montré que la perte de fonction de TEX1, seulement dans la racine, est suffisante pour supprimer le phénotype de la croissance réduite des parties aériennes observé chez le mutant phol, tout en maintenant de faibles teneurs en Pi foliaire. Ceci indique que TEX1 est impliqué dans la signalisation longue distance entre les racines et les parties aériennes. Nous avons identifié un petit facteur de transcription proche de la famille des MYB, RAD LIKE 3 (RL3), comme une cible potentielle en aval du complexe THO / TREX. L'expression du gène RL3 est induite dans le mutant phol mais atténuée dans le double mutant phol-7 texl-4. Exactement comme les plantes mutées d'un des membres du complexe THO/TREX, le mutant rl3 peut supprimer le phénotype foliaire de phol. RL3 est induit au cours d'une carence en Pi et est décrit dans la littérature comme étant potentiellement mobile. Par conséquent, il serait un nouveau candidat potentiellement impliqué dans la réponse longue distance entre les racines et les parties aériennes lors d'un déficit en Pi. Enfin, nous reportons que PHOl et son homologue PHOl: H3 sont impliqués dans la co- régulation de l'homéostasie du Pi et du zinc (Zn). PHOl; H3 est sur-exprimé en réponse au déficit en Zn et, comme PHOl, est exprimé dans les tissus vasculaires des racines et se localise dans l'appareil de Golgi lorsqu'il est exprimé de manière transitoire dans des cellules de tabac. Le mutant phol; h3 accumule plus de Pi par rapport aux plantes sauvages lorsqu'il est cultivé sur un milieu déficient en Zn, mais cette augmentation en Pi est abolie dans le double mutant phol phol; h3. Ces résultats suggèrent qu'en réponse à une carence en Zn, PHOl; H3 limite l'action de PHOl et diminue le transfert du Pi des racines aux parties aériennes.