198 resultados para oscillatory breathing


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ophiolites occur at several places in the Lower Penninic of the W and Central Alps. They are generally ascribed to oceanic crust of a so-called ``Valais ocean'' of Cretaceous age which plays a fundamental role in many models of Alpine paleogeography and geodynamics. The type locality and only observational base for the definition of a ``Valais ocean'' in the W Alps is the Versoyen ophiolitic complex, on the French-Italian boundary W of the Petit St-Bernard col. The idea of a "Valais ocean'' is based on two propositions that are since 40 years the basis for most reconstructions of the Lower Penninic: (1) The Versoyen forms the (overturned) stratigraphic base of the Cretaceous-Tertiary Valais-Tarentaise series; and (2) it has a Cretaceous age. We present new field and isotopic data that severely challenge both propositions. (1) The base of the Versoyen ophiolite is a thrust. It overlies a wildflysch with blocks of Versoyen rocks, named the Mechandeur Formation. This ``supra-Tarentaise'' wildflysch has been confused with an (overturned) stratigraphic transition from the Versoyen to the Valais-Tarentaise series. Thus the contact Versoyen/Tarentaise is not stratigraphic but tectonic, and the Versoyen ophiolite has no link with the Valais basin. This thrust corresponds to an inverse metamorphic discontinuity and to an abrupt change in tectonic style. (2) The contact of the Versoyen complex with the overlying Triassic-Jurassic Petit St-Bernard (PSB) series is stratigraphic (and not tectonic as admitted by all authors since 50 years). Several types of sedimentary structures polarize it and show that the PSB series is younger than the Versoyen. Consequently the Versoyen ophiolitic complex is Paleozoic and forms the basement of the PSB Mesozoic sediments. They both belong to a single tectonic unit, named the Versoyen-Petit St-Bernard nappe. (3) Ion microprobe U-Pb isotopic data on zircons from the main gabbroic intrusion in the Versoyen complex give a crystallization age of 337.0 +/- 4.1 Ma (Visean, Early Carboniferous). These zircons show typical oscillatory zoning and no overgrowth or corrosion. and are interpreted to date the Versoyen magmatism. These U-Pb data are in excellent agreement with our field observations and confirm the Paleozoic age of the Versoyen ophiolite. The existence of a ``Valais ocean'' of Cretaceous age in the W Alps becomes very improbable. The eclogite facies metamorphism of the Versoyen-Petit St-Bernard nappe results from an Alpine intra-continental subduction, guided by a Paleozoic oceanic suture. This is an example of the lone term influence of inherited deep-seated structures on a Much younger orogeny. This might well be a major cause of of the inherent complexity of the Alps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Respiratory care is universally recognised as useful, but its indications and practice vary markedly. In order to improve appropriateness of respiratory care in our hospital, we developed evidence-based local guidelines in a collaborative effort involving physiotherapists, physicians, and health services researchers. Methods: Recommendations were developed using the standardised RAND appropriateness method. A literature search was performed for the period between 1995 and 2008 based on terms associated with guidelines and with respiratory care. Publications were assessed according to the Oxford classification of quality of evidence. A working group prepared proposals for recommendations which were then independently rated by a multidisciplinary expert panel. All recommendations were then discussed in common and indications for procedures were rated confidentially a second time by the experts. Each indication for respiratory care was classified as appropriate, uncertain, or inappropriate, based on the panel median rating and the degree of intra-panel agreement. Results: Recommendations were formulated for the following procedures: non-invasive ventilation, continuous positive airway pressure, intermittent positive pressure breathing, intrapulmonary percussive ventilation, mechanical insufflation-exsufflation, incentive spirometry, positive expiratory pressure, nasotracheal suctioning, noninstrumental airway clearance techniques. Each recommendation referred to a particular medical condition, and was assigned to a hierarchical category based on the quality of evidence from literature supporting the recommendation and on the consensus of experts. Conclusion: Despite a marked heterogeneity of scientific evidence, the method used allowed us to develop commonly agreed local guidelines for respiratory care. In addition, this work fostered a closer relationship between physiotherapists and physicians in our institution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contribution of respiratory muscle work to the development of the O(2) consumption (Vo(2)) slow component is a point of controversy because it has been shown that the increased ventilation in hypoxia is not associated with a concomitant increase in Vo(2) slow component. The first purpose of this study was thus to test the hypothesis of a direct relationship between respiratory muscle work and Vo(2) slow component by manipulating inspiratory resistance. Because the conditions for a Vo(2) slow component specific to respiratory muscle can be reached during intense exercise, the second purpose was to determine whether respiratory muscles behave like limb muscles during heavy exercise. Ten trained subjects performed two 8-min constant-load heavy cycling exercises with and without a threshold valve in random order. Vo(2) was measured breath by breath by using a fast gas exchange analyzer, and the Vo(2) response was modeled after removal of the cardiodynamic phase by using two monoexponential functions. As anticipated, when total work was slightly increased with loaded inspiratory resistance, slight increases in base Vo(2), the primary phase amplitude, and peak Vo(2) were noted (14.2%, P < 0.01; 3.5%, P > 0.05; and 8.3%, P < 0.01, respectively). The bootstrap method revealed small coefficients of variation for the model parameter, including the slow-component amplitude and delay (15 and 19%, respectively), indicating an accurate determination for this critical parameter. The amplitude of the Vo(2) slow component displayed a 27% increase from 8.1 +/- 3.6 to 10.3 +/- 3.4 ml. min(-1). kg(-1) (P < 0.01) with the addition of inspiratory resistance. Taken together, this increase and the lack of any differences in minute volume and ventilatory parameters between the two experimental conditions suggest the occurrence of a Vo(2) slow component specific to the respiratory muscles in loaded condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to SNR constraints, current "bright-blood" 3D coronary MRA approaches still suffer from limited spatial resolution when compared to conventional x-ray coronary angiography. Recent 2D fast spin-echo black-blood techniques maximize signal for coronary MRA at no loss in image spatial resolution. This suggests that the extension of black-blood coronary MRA with a 3D imaging technique would allow for a further signal increase, which may be traded for an improved spatial resolution. Therefore, a dual-inversion 3D fast spin-echo imaging sequence and real-time navigator technology were combined for high-resolution free-breathing black-blood coronary MRA. In-plane image resolution below 400 microm was obtained. Magn Reson Med 45:206-211, 2001.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose of the study: Basic life support (BLS) and automated externaldefibrillation (AED) represent important skills to be acquired duringpregraduate medical training. Since 3 years, our medical school hasintroduced a BLS-AED course (with certification) for all second yearmedical students. Few reports about quality and persistence over timeof BLS-AED learning are available to date in the medical literature.Comprehensive evaluation of students' acquired skills was performedat the end of the 2008 academic year, 6 month after certification.Materials and methods: The students (N = 142) were evaluated duringa 9 minutes «objective structured clinical examination» (OSCE) station.Out of a standardized scenario, they had to recognize a cardiac arrestsituation and start a resuscitation process. Their performance wererecorded on a PC using an Ambuman(TM) mannequin and the AmbuCPR software kit(TM) during a minimum of 8 cycles (30 compressions:2 ventilations each). BLS parameters were systematically checked. Nostudent-rater interactions were allowed during the whole evaluation.Results: Response of the victim was checked by 99% of the students(N = 140), 96% (N = 136) called for an ambulance and/or an AED. Openthe airway and check breathing were done by 96% (N = 137), 92% (N =132) gave 2 rescue breaths. Pulse was checked by 95% (N=135), 100%(N = 142) begun chest compression, 96% (N = 136) within 1 minute.Chest compression rate was 101 ± 18 per minute (mean ± SD), depthcompression 43 ± 8 mm, 97% (N = 138) respected a compressionventilationratio of 30:2.Conclusions: Quality of BLS skills acquisition is maintained during a6-month period after a BLS-AED certification. Main targets of 2005 AHAguidelines were well respected. This analysis represents one of thelargest evaluations of specific BLS teaching efficiency reported. Furtherfollow-up is needed to control the persistence of these skills during alonger time period and noteworthy at the end of the pregraduatemedical curriculum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current research on sleep using experimental animals is limited by the expense and time-consuming nature of traditional EEG/EMG recordings. We present here an alternative, noninvasive approach utilizing piezoelectric films configured as highly sensitive motion detectors. These film strips attached to the floor of the rodent cage produce an electrical output in direct proportion to the distortion of the material. During sleep, movement associated with breathing is the predominant gross body movement and, thus, output from the piezoelectric transducer provided an accurate respiratory trace during sleep. During wake, respiratory movements are masked by other motor activities. An automatic pattern recognition system was developed to identify periods of sleep and wake using the piezoelectric generated signal. Due to the complex and highly variable waveforms that result from subtle postural adjustments in the animals, traditional signal analysis techniques were not sufficient for accurate classification of sleep versus wake. Therefore, a novel pattern recognition algorithm was developed that successfully distinguished sleep from wake in approximately 95% of all epochs. This algorithm may have general utility for a variety of signals in biomedical and engineering applications. This automated system for monitoring sleep is noninvasive, inexpensive, and may be useful for large-scale sleep studies including genetic approaches towards understanding sleep and sleep disorders, and the rapid screening of the efficacy of sleep or wake promoting drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous research has demonstrated covariation of physiological responding with judgments of valence and arousal. However, until now links between these affective dimensions and respiratory measures have not been extensively investigated. In this study, eight picture series of different affective valence and arousal level were shown to 30 subjects, while respiration, skin conductance level (SCL), heart rate (HR) and affective judgments were measured. With increasing pleasantness, inspiratory time lengthened, mean inspiratory flow decreased and thoracic breathing increased. With increasing arousal, inspiratory time and total breath duration shortened and mean inspiratory flow, minute ventilation, thoracic breathing and electrodermal activity increased. These findings confirm the importance of arousal in respiratory responding, but also indicate a modulatory role of affective valence.We propose that the arousal effects reflect energy mobilization in preparation to act, and thatthe valence effects might be a manifestation of an attention bias toward negative stimuli. [Authors]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RATIONALE AND OBJECTIVES: Recent developments of magnetic resonance imaging enabled free-breathing coronary MRA (cMRA) using steady-state-free-precession (SSFP) for endogenous contrast. The purpose of this study was a systematic comparison of SSFP cMRA with standard T2-prepared gradient-echo and spiral cMRA. METHODS: Navigator-gated free-breathing T2-prepared SSFP-, T2-prepared gradient-echo- and T2-prepared spiral cMRA was performed in 18 healthy swine (45-68 kg body-weight). Image quality was investigated subjectively and signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and vessel sharpness were compared. RESULTS: SSFP cMRA allowed for high quality cMRA during free breathing with substantial improvements in SNR, CNR and vessel sharpness when compared with standard T2-prepared gradient-echo imaging. Spiral imaging demonstrated the highest SNR while image quality score and vessel definition was best for SSFP imaging. CONCLUSION: Navigator-gated free-breathing T2-prepared SSFP cMRA is a promising new imaging approach for high signal and high contrast imaging of the coronary arteries with improved vessel border definition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-threshold (T-type) Ca(2+) channels encoded by the Ca(V)3 genes endow neurons with oscillatory properties that underlie slow waves characteristic of the non-rapid eye movement (NREM) sleep EEG. Three Ca(V)3 channel subtypes are expressed in the thalamocortical (TC) system, but their respective roles for the sleep EEG are unclear. Ca(V)3.3 protein is expressed abundantly in the nucleus reticularis thalami (nRt), an essential oscillatory burst generator. We report the characterization of a transgenic Ca(V)3.3(-/-) mouse line and demonstrate that Ca(V)3.3 channels are indispensable for nRt function and for sleep spindles, a hallmark of natural sleep. The absence of Ca(V)3.3 channels prevented oscillatory bursting in the low-frequency (4-10 Hz) range in nRt cells but spared tonic discharge. In contrast, adjacent TC neurons expressing Ca(V)3.1 channels retained low-threshold bursts. Nevertheless, the generation of synchronized thalamic network oscillations underlying sleep-spindle waves was weakened markedly because of the reduced inhibition of TC neurons via nRt cells. T currents in Ca(V)3.3(-/-) mice were <30% compared with those in WT mice, and the remaining current, carried by Ca(V)3.2 channels, generated dendritic [Ca(2+)](i) signals insufficient to provoke oscillatory bursting that arises from interplay with Ca(2+)-dependent small conductance-type 2 K(+) channels. Finally, naturally sleeping Ca(V)3.3(-/-) mice showed a selective reduction in the power density of the σ frequency band (10-12 Hz) at transitions from NREM to REM sleep, with other EEG waves remaining unaltered. Together, these data identify a central role for Ca(V)3.3 channels in the rhythmogenic properties of the sleep-spindle generator and provide a molecular target to elucidate the roles of sleep spindles for brain function and development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: A right-to-left shunt can be identified by contrast transcranial Doppler ultrasonography (c-TCD) at rest and/or after a Valsalva maneuver (VM) or by arterial blood gas (ABG) measurement. We assessed the influence of controlled strain pressures and durations during VM on the right-to-left passage of microbubbles, on which depends the shunt classification by c-TCD, and correlated it with the right-to-left shunt evaluation by ABG measurements in stroke patients with patent foramen ovale (PFO). METHODS: We evaluated 40 stroke patients with transesophageal echocardiography-documented PFO. The microbubbles were recorded with TCD at rest and after 4 different VM conditions with controlled duration and target strain pressures (duration in seconds and pressure in cm H2O, respectively): V5-20, V10-20, V5-40, and V10-40. The ABG analysis was performed after pure oxygen breathing in 34 patients, and the shunt was calculated as percentage of cardiac output. RESULTS: Among all VM conditions, V5-40 and V10-40 yielded the greatest median number of microbubbles (84 and 95, respectively; P&lt;0.01). A significantly larger number of microbubbles were detected in V5-40 than in V5-20 (P&lt;0.001) and in V10-40 than in V10-20 (P&lt;0.01). ABG was not sensitive enough to detect a shunt in 31 patients. CONCLUSIONS: The increase of VM expiratory pressure magnifies the number of microbubbles irrespective of the strain duration. Because the right-to-left shunt classification in PFO is based on the number of microbubbles, a controlled VM pressure is advised for a reproducible shunt assessment. The ABG measurement is not sensitive enough for shunt assessment in stroke patients with PFO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives. The goal of this study is to evaluate a T2-mapping sequence by: (i) measuring the reproducibility intra- and inter-observer variability in healthy volunteers in two separate scanning session with a T2 reference phantom; (2) measuring the mean T2 relaxation times by T2-mapping in infarcted myocardium in patients with subacute MI and compare it with patient's the gold standard X-ray coronary angiography and healthy volunteers results. Background. Myocardial edema is a consequence of an inflammation of the tissue, as seen in myocardial infarct (MI). It can be visualized by cardiovascular magnetic resonance (CMR) imaging using the T2 relaxation time. T2-mapping is a quantitative methodology that has the potential to address the limitation of the conventional T2-weighted (T2W) imaging. Methods. The T2-mapping protocol used for all MRI scans consisted in a radial gradient echo acquisition with a lung-liver navigator for free-breathing acquisition and affine image registration. Mid-basal short axis slices were acquired.T2-maps analyses: 2 observers semi- automatically segmented the left ventricle in 6 segments accordingly to the AHA standards. 8 healthy volunteers (age: 27 ± 4 years; 62.5% male) were scanned in 2 separate sessions. 17 patients (age : 61.9 ± 13.9 years; 82.4% male) with subacute STEMI (70.6%) and NSTEMI underwent a T2-mapping scanning session. Results. In healthy volunteers, the mean inter- and intra-observer variability over the entire short axis slice (segment 1 to 6) was 0.1 ms (95% confidence interval (CI): -0.4 to 0.5, p = 0.62) and 0.2 ms (95% CI: -2.8 to 3.2, p = 0.94, respectively. T2 relaxation time measurements with and without the correction of the phantom yielded an average difference of 3.0 ± 1.1 % and 3.1 ± 2.1 % (p = 0.828), respectively. In patients, the inter-observer variability in the entire short axis slice (S1-S6), was 0.3 ms (95% CI: -1.8 to 2.4, p = 0.85). Edema location as determined through the T2-mapping and the coronary artery occlusion as determined on X-ray coronary angiography correlated in 78.6%, but only in 60% in apical infarcts. All except one of the maximal T2 values in infarct patients were greater than the upper limit of the 95% confidence interval for normal myocardium. Conclusions. The T2-mapping methodology is accurate in detecting infarcted, i.e. edematous tissue in patients with subacute infarcts. This study further demonstrated that this T2-mapping technique is reproducible and robust enough to be used on a segmental basis for edema detection without the need of a phantom to yield a T2 correction factor. This new quantitative T2-mapping technique is promising and is likely to allow for serial follow-up studies in patients to improve our knowledge on infarct pathophysiology, on infarct healing, and for the assessment of novel treatment strategies for acute infarctions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A low arousal threshold is believed to predispose to breathing instability during sleep. The present authors hypothesised that trazodone, a nonmyorelaxant sleep-promoting agent, would increase the effort-related arousal threshold in obstructive sleep apnoea (OSA) patients. In total, nine OSA patients, mean+/-sd age 49+/-9 yrs, apnoea/hypopnoea index 52+/-32 events.h(-1), were studied on 2 nights, one with trazodone at 100 mg and one with a placebo, in a double blind randomised fashion. While receiving continuous positive airway pressure (CPAP), repeated arousals were induced: 1) by increasing inspired CO(2) and 2) by stepwise decreases in CPAP level. Respiratory effort was measured with an oesophageal balloon. End-tidal CO(2 )tension (P(ET,CO(2))) was monitored with a nasal catheter. During trazodone nights, compared with placebo nights, the arousals occurred at a higher P(ET,CO(2)) level (mean+/-sd 7.30+/-0.57 versus 6.62+/-0.64 kPa (54.9+/-4.3 versus 49.8+/-4.8 mmHg), respectively). When arousals were triggered by increasing inspired CO(2) level, the maximal oesophageal pressure swing was greater (19.4+/-4.0 versus 13.1+/-4.9 cm H(2)O) and the oesophageal pressure nadir before the arousals was lower (-5.1+/-4.7 versus -0.38+/-4.2 cm H(2)O) with trazodone. When arousals were induced by stepwise CPAP drops, the maximal oesophageal pressure swings before the arousals did not differ. Trazodone at 100 mg increased the effort-related arousal threshold in response to hypercapnia in obstructive sleep apnoea patients and allowed them to tolerate higher CO(2) levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: An accurate, noninvasive technique for the diagnosis of coronary disease would be an important advance. We investigated the accuracy of coronary magnetic resonance angiography among patients with suspected coronary disease in a prospective, multicenter study. METHODS: Coronary magnetic resonance angiography was performed during free breathing in 109 patients before elective x-ray coronary angiography, and the results of the two diagnostic procedures were compared. RESULTS: A total of 636 of 759 proximal and middle segments of coronary arteries (84 percent) were interpretable on magnetic resonance angiography. In these segments, 78 (83 percent) of 94 clinically significant lesions (those with a > or = 50 percent reduction in diameter on x-ray angiography) were also detected by magnetic resonance angiography. Overall, coronary magnetic resonance angiography had an accuracy of 72 percent (95 percent confidence interval, 63 to 81 percent) in diagnosing coronary artery disease. The sensitivity, specificity, and accuracy for patients with disease of the left main coronary artery or three-vessel disease were 100 percent (95 percent confidence interval, 97 to 100 percent), 85 percent (95 percent confidence interval, 78 to 92 percent), and 87 percent (95 percent confidence interval, 81 to 93 percent), respectively. The negative predictive values for any coronary artery disease and for left main artery or three-vessel disease were 81 percent (95 percent confidence interval, 73 to 89 percent) and 100 percent (95 percent confidence interval, 97 to 100 percent), respectively. CONCLUSIONS: Among patients referred for their first x-ray coronary angiogram, three-dimensional coronary magnetic resonance angiography allows for the accurate detection of coronary artery disease of the proximal and middle segments. This noninvasive approach reliably identifies (or rules out) left main coronary artery or three-vessel disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION. Patient-ventilator asynchrony is a frequent issue in non invasivemechanical ventilation (NIV) and leaks at the patient-mask interface play a major role in itspathogenesis. NIV algorithms alleviate the deleterious impact of leaks and improve patient-ventilator interaction. Neurally adusted ventilatory assist (NAVA), a neurally triggered modethat avoids interferences between leaks and the usual pneumatic trigger, could further improvepatient-ventilator interaction in NIV patients.OBJECTIVES. To evaluate the feasibility ofNAVAin patients receiving a prophylactic postextubationNIV and to compare the respective impact ofPSVandNAVAwith and withoutNIValgorithm on patient-ventilator interaction.METHODS. Prospective study conducted in 16 beds adult critical care unit (ICU) in a tertiaryuniversity hospital. Over a 2 months period, were included 17 adult medical ICU patientsextubated for less than 2 h and in whom a prophylactic post-extubation NIV was indicated.Patients were randomly mechanically ventilated for 10 min with: PSV without NIV algorithm(PSV-NIV-), PSV with NIV algorithm (PSV-NIV+),NAVAwithout NIV algorithm (NAVANIV-)and NAVA with NIV algorithm (NAVA-NIV+). Breathing pattern descriptors, diaphragmelectrical activity, leaks volume, inspiratory trigger delay (Tdinsp), inspiratory time inexcess (Tiexcess) and the five main asynchronies were quantified. Asynchrony index (AI) andasynchrony index influenced by leaks (AIleaks) were computed.RESULTS. Peak inspiratory pressure and diaphragm electrical activity were similar in thefour conditions. With both PSV and NAVA, NIV algorithm significantly reduced the level ofleak (p\0.01). Tdinsp was not affected by NIV algorithm but was shorter in NAVA than inPSV (p\0.01). Tiexcess was shorter in NAVA and PSV-NIV+ than in PSV-NIV- (p\0.05).The prevalence of double triggering was significantly lower in PSV-NIV+ than in NAVANIV+.As compared to PSV,NAVAsignificantly reduced the prevalence of premature cyclingand late cycling while NIV algorithm did not influenced premature cycling. AI was not affectedby NIV algorithm but was significantly lower in NAVA than in PSV (p\0.05). AIleaks wasquasi null with NAVA and significantly lower than in PSV (p\0.05).CONCLUSIONS. NAVA is feasible in patients receiving a post-extubation prophylacticNIV. NAVA and NIV improve patient-ventilator synchrony in different manners. NAVANIV+offers the best patient-ventilator interaction. Clinical studies are required to assess thepotential clinical benefit of NAVA in patients receiving NIV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Increased respiratory pattern variability is associated with improved oxygenation. Pressure support (PS) is a widely used partial-assist mechanical ventilation (MV) mode, in which each breathing cycle is initiated by flow or pressure variation at the airway due to patient inspiratory effort. Neurally adjusted ventilatory assist (NAVA) is relatively new and uses the electrical activity of the diaphragm (Eadi) to deliver ventilatory support proportional to the patient's inspiratory demand. We hypothesize that respiratory variability should be greater with NAVA compared with PS.Methods: Twenty-two patients underwent 20 minutes of PS followed by 20 minutes of NAVA. Flow and Eadi curves were used to obtain tidal volume (Vt) and ∫Eadi for 300 to 400 breaths in each patient. Patient-specific cumulative distribution functions (CDF) show the percentage Vt and ∫Eadi within a clinically defined (±10%) variability band for each patient. Values are normalized to patient-specific medians for direct comparison. Variability in Vt (outcome) is thus expressed in terms of variability in ∫Eadi (demand) on the same plot.Results: Variability in Vt relative to variability in ∫Eadi is significantly greater for NAVA than PS (P = 0.00012). Hence, greater variability in outcome Vt is obtained for a given demand in ∫Eadi, under NAVA, as illustrated in Figure 1 for a typical patient. A Fisher 2 × 2 contingency analysis showed that 45% of patients under NAVA had a Vt variability in equal proportion to ∫Eadi variability, versus 0% for PS (P < 0.05).Conclusions: NAVA yields greater variability in tidal volume, relative to ∫Eadi demand, and a better match between Vt and ∫Eadi. These results indicate that NAVA could achieve improved oxygenation compared with PS when sufficient underlying variability in ∫Eadi is present, due to its ability to achieve higher tidal volume variability from a given variability in ∫Eadi.