242 resultados para metabolic reprogramming
Resumo:
OBJECTIVES: The validity of equations for the calculation of resting metabolic rate (RMR) were studied and new predictive equations were developed. STUDY DESIGN: The RMR was measured in a sample of 371 10- to 16-year-old prepubertal and postpubertal children. The study group included 193 male (116 nonobese and 77 obese) and 178 female (119 nonobese and 59 obese) subjects; for each group the RMRs predicted from five equations recommended for this age group were compared. The RMR was assessed by indirect calorimetry with a ventilated hood system for 45 minutes after an overnight fast. Body composition was estimated from skin-fold measurements. RESULTS: The mean +/- SD RMR was found to be 5600 +/- 972 kJ/24 hr and 7223 +/- 1220 kJ/24 hr in nonobese and obese boys, and 5112 +/- 632 kJ/24 hr and 6665 +/- 1106 kJ/24 hr in nonobese and obese girls, respectively. All five equations applicable to 10- to 16-year-old children overestimated RMR by 7.5% to 18.1% (p < 0.001 for each equation). Stepwise regression analysis, with independent variables such as age, weight, height, and gender, allowed development of new predictive equations for the calculation of RMR in 10- to 16-year-old boys (RMR = 50.9 Weight (kg) + 25.3 Height (cm) -50.3 Age (yr) + 26.9; R2 = 0.884, p < 0.0001) and girls (RMR = 51.2 Weight (kg) + 24.5 Height (cm) - 207.5 Age (yr) + 1629.8; R2 = 0.824, p < 0.0001). These predictive equations were tested in a second, independent cohort of children (80 male and 61 female subject) and were found to give a reliable estimate of RMR in 10- to 16-year-old obese and nonobese adolescents. CONCLUSIONS: The currently used predictive equations overestimate RMR in 10- to 16-year-old children. The use of the newly developed equations is recommended.
Resumo:
In recent years, previously unsuspected roles of astrocytes have been revealed, largely owing to the development of new tools enabling their selective study in situ. These exciting findings add to the large body of evidence demonstrating that astrocytes play a central role in brain homeostasis, in particular via the numerous cooperative metabolic processes they establish with neurons, such as the supply of energy metabolites and neurotransmitter recycling functions. Furthermore, impairments in astrocytic function are increasingly being recognized as an important contributor to neuronal dysfunction and, in particular, neurodegenerative processes. In this review, we discuss recent evidence supporting important roles for astrocytes in neuropathological conditions such as neuroinflammation, amyotrophic lateral sclerosis and Alzheimer's disease. We also explore the potential for neuroprotective therapeutics based on the modulation of astrocytic functions.
Resumo:
Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes.
Resumo:
The peroxisome proliferator-activated receptor (PPAR) family comprises three distinct isotypes: PPARalpha, PPARbeta/delta and PPARgamma. PPARs are nuclear hormone receptors that mediate the effects of fatty acids and their derivatives at the transcriptional level. Until recently, the characterisation of the important role of PPARalpha in fatty acid oxidation and of PPARgamma in lipid storage contrasted with the sparse information concerning PPARbeta/delta. However, evidence is now emerging for a role of PPARbeta/delta in tissue repair and energy homeostasis. Experiments with tissue-specific overexpression of PPARbeta/delta or treatment of mice with selective PPARbeta/delta agonists demonstrated that activation of PPARbeta/delta in vivo increases lipid catabolism in skeletal muscle, heart and adipose tissue and improves the serum lipid profile and insulin sensitivity in several animal models. PPARbeta/delta activation also prevents the development of obesity and improves cholesterol homeostasis in obesity-prone mouse models. These new insights into PPARbeta/delta functions suggest that targeting PPARbeta/delta may be helpful for treating disorders associated with the metabolic syndrome. Although these perspectives are promising, several independent and contradictory reports raise concerns about the safety of PPARbeta/delta ligands with respect to tumourigenic activity in the gut. Thus, it appears that further exploration of PPARbeta/delta functions is necessary to better define its potential as a therapeutic target.
Resumo:
SUMMARY The human auditory cortex, located on the supratemporal plane of the temporal lobe, is divided in a primary auditory area and several non-primary areas surrounding it. These different areas show anatomical and functional differences. Many studies have focussed on auditory areas in non-human primates, using investigation techniques such as electrophysiological recordings, tracing of neural connections, or immunohistochemical and histochemical staining. Some of these studies have suggested parallel and hierarchical organization of the cortical auditory areas as well as subcortical auditory relays. In humans, only few studies have investigated these regions immunohistochemically, but activation and lesion studies speak in favour of parallel and hierarchical organization, very similar to that of non-human primates. Calcium-binding proteins and metabolic markers were used to investigate possible correlates of hierarchical and parallel organization in man. Calcium-binding proteins, parvalbumin, calretinin and calbindin, modulate the concentration of intracellular free calcium ions and were found in distinct subpopulations of GABAergic neurons in non-human primates species. In our study, their distribution showed several differences between auditory areas: the primary auditory area was darkly stained for both parvalbumin and calbindin, and their expression rapidly decreased while moving away from the primary area. This staining pattern suggests a hierarchical organization of the areas, in which the more darkly stained areas could correspond to an earlier integration level and the areas showing light staining may correspond to higher level integration areas. Parallel organization of primary and non-primary auditory areas was suggested by the complementarity, within a given area, between parvalbumin and calbindin expression across layers. To investigate the possible differences in the energetic metabolism of the cortical auditory areas, several metabolic markers were used: cytochrome oxidase and LDH1 were used as oxidative metabolism markers and LDH5 was used as glycolytic metabolism marker. The results obtained show a difference in the expression of enzymes involved in oxidative metabolism between areas. In the primary auditory area the oxidative metabolism markers were maximally expressed in layer IV. In contrast, higher order areas showed maximal staining in supragranular layers. The expression of LDH5 varied in patches, but did not differ between the different hierarchical auditory areas. The distribution of the two LDH enzymes isoforms also provides information about cellular aspects of metabolic organization, since neurons expressed the LDH1 isoform whereas astrocytes express primarily LDH5, but some astrocytes also contained the LDH1 isoform. This cellular distribution pattern supports the hypothesis of the existence of an astrocyte-neuron lactate shuttle, previously suggested in rodent studies, and in particular of lactate transfer from astrocytes, which produce lactate from the glucose obtained from the circulation, to neurons that use lactate as energy substrate. In conclusion, the hypothesis of parallel and hierarchical organization of the auditory areas can be supported by CaBPs, cytochrome oxidase and LDH1 distribution. Moreover, the two LDHs cellular distribution pattern support the hypothesis of an astrocyte-neuron lactate shuttle in human cortex.
Resumo:
BACKGROUND: For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB), such substrates could replace glucose if produced locally.The two key enzymatiques systems required for the production of these monocarboxylates are lactate dehydrogenase (LDH; EC1.1.1.27) that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA and oxydative phosphorylation. RESULTS: In this article, we show, with monoclonal antibodies applied to post-mortem human brain tissues, that the typically glycolytic isoenzyme of lactate dehydrogenase (LDH-5; also called LDHA or LDHM) is selectively present in astrocytes, and not in neurons, whereas pyruvate dehydrogenase (PDH) is mainly detected in neurons and barely in astrocytes. At the regional level, the distribution of the LDH-5 immunoreactive astrocytes is laminar and corresponds to regions of maximal 2-deoxyglucose uptake in the occipital cortex and hippocampus. In hippocampus, we observed that the distribution of the oxidative enzyme PDH was enriched in the neurons of the stratum pyramidale and stratum granulosum of CA1 through CA4, whereas the glycolytic enzyme LDH-5 was enriched in astrocytes of the stratum moleculare, the alveus and the white matter, revealing not only cellular, but also regional, selective distributions. The fact that LDH-5 immunoreactivity was high in astrocytes and occurred in regions where the highest uptake of 2-deoxyglucose was observed suggests that glucose uptake followed by lactate production may principally occur in these regions. CONCLUSION: These observations reveal a metabolic segregation, not only at the cellular but also at the regional level, that support the notion of metabolic compartmentalization between astrocytes and neurons, whereby lactate produced by astrocytes could be oxidized by neurons.
Resumo:
Genome-scale metabolic network reconstructions are now routinely used in the study of metabolic pathways, their evolution and design. The development of such reconstructions involves the integration of information on reactions and metabolites from the scientific literature as well as public databases and existing genome-scale metabolic models. The reconciliation of discrepancies between data from these sources generally requires significant manual curation, which constitutes a major obstacle in efforts to develop and apply genome-scale metabolic network reconstructions. In this work, we discuss some of the major difficulties encountered in the mapping and reconciliation of metabolic resources and review three recent initiatives that aim to accelerate this process, namely BKM-react, MetRxn and MNXref (presented in this article). Each of these resources provides a pre-compiled reconciliation of many of the most commonly used metabolic resources. By reducing the time required for manual curation of metabolite and reaction discrepancies, these resources aim to accelerate the development and application of high-quality genome-scale metabolic network reconstructions and models.
Resumo:
Recent evidence supports and reinforces the concept that environmental cues may reprogramme somatic cells and change their natural fate. In the present review, we concentrate on environmental reprogramming and fate potency of different epithelial cells. These include stratified epithelia, such as the epidermis, hair follicle, cornea and oesophagus, as well as the thymic epithelium, which stands alone among simple and stratified epithelia, and has been shown recently to contain stem cells. In addition, we briefly discuss the pancreas as an example of plasticity of intrinsic progenitors and even differentiated cells. Of relevance, examples of plasticity and fate change characterize pathologies such as oesophageal metaplasia, whose possible cell origin is still debated, but has important implications as a pre-neoplastic event. Although much work remains to be done in order to unravel the full potential and plasticity of epithelial cells, exploitation of this phenomenon has already entered the clinical arena, and might provide new avenues for future cell therapy of these tissues.
Resumo:
AIMS/HYPOTHESIS: The metabolic syndrome comprises a clustering of cardiovascular risk factors but the underlying mechanism is not known. Mice with targeted disruption of endothelial nitric oxide synthase (eNOS) are hypertensive and insulin resistant. We wondered, whether eNOS deficiency in mice is associated with a phenotype mimicking the human metabolic syndrome. METHODS AND RESULTS: In addition to arterial pressure and insulin sensitivity (euglycaemic hyperinsulinaemic clamp), we measured the plasma concentration of leptin, insulin, cholesterol, triglycerides, free fatty acids, fibrinogen and uric acid in 10 to 12 week old eNOS-/- and wild type mice. We also assessed glucose tolerance under basal conditions and following a metabolic stress with a high fat diet. As expected eNOS-/- mice were hypertensive and insulin resistant, as evidenced by fasting hyperinsulinaemia and a roughly 30 percent lower steady state glucose infusion rate during the clamp. eNOS-/- mice had a 1.5 to 2-fold elevation of the cholesterol, triglyceride and free fatty acid plasma concentration. Even though body weight was comparable, the leptin plasma level was 30% higher in eNOS-/- than in wild type mice. Finally, uric acid and fibrinogen were elevated in the eNOS-/- mice. Whereas under basal conditions, glucose tolerance was comparable in knock out and control mice, on a high fat diet, knock out mice became significantly more glucose intolerant than control mice. CONCLUSIONS: A single gene defect, eNOS deficiency, causes a clustering of cardiovascular risk factors in young mice. We speculate that defective nitric oxide synthesis could trigger many of the abnormalities making up the metabolic syndrome in humans.
Resumo:
Cancer stem cells (CSCs) display plasticity and self-renewal properties reminiscent of normal tissue stem cells, but the events responsible for their emergence remain obscure. We recently identified CSCs in Ewing sarcoma family tumors (ESFTs) and showed that they retain mesenchymal stem cell (MSC) plasticity. In the present study, we addressed the mechanisms that underlie ESFT CSC development. We show that the EWS-FLI-1 fusion gene, associated with 85%-90% of ESFTs and believed to initiate their pathogenesis, induces expression of the embryonic stem cell (ESC) genes OCT4, SOX2, and NANOG in human pediatric MSCs (hpMSCs) but not in their adult counterparts. Moreover, under appropriate culture conditions, hpMSCs expressing EWS-FLI-1 generate a cell subpopulation displaying ESFT CSC features in vitro. We further demonstrate that induction of the ESFT CSC phenotype is the result of the combined effect of EWS-FLI-1 on its target gene expression and repression of microRNA-145 (miRNA145) promoter activity. Finally, we provide evidence that EWS-FLI-1 and miRNA-145 function in a mutually repressive feedback loop and identify their common target gene, SOX2, in addition to miRNA145 itself, as key players in ESFT cell differentiation and tumorigenicity. Our observations provide insight for the first time into the mechanisms whereby a single oncogene can reprogram primary cells to display a CSC phenotype.
Resumo:
Forty-eight measurements of energy expenditure were performed in 15 very low-birth-weight infants during the first 6 wk of life. Their mean birth weight and gestation age was 1223 g and 31 wk respectively. Their mean weight gain was 11.2 g/kg . d (range: -6.6 to +15.9 g/kg . d.). The mean energy expenditure increased from 170 kJ/kg . d (wk 1) to 252 kJ/kg . d (wk 6). There was a significant relationship between weight gain and energy expenditure (r = 0.58, P less than 0.001) and also between the net increase in body weight gain and the net increase in energy expenditure (r = 0.80, P less than 0.001). From the slopes of these regression lines, the metabolic cost of growth was found to be approximately 2.3 kJ/g of weight gain. Carbohydrate oxidation represented 80% of energy expenditure at the second wk and decreased to 65% the 6th wk, whereas lipid oxidation during the same period increased from 14 to 30% and the relative protein oxidation remained unchanged, covering 5-6% of the energy expended.
Resumo:
Rapport de synthèse : Les maladies cardio-vasculaires constituent les causes principales causes de morbidité et de mortalité dans les pays industrialisés. Des études épidémiologiques ont démontré l'implication de facteurs de risques comme l'hypertension, l'hypercholestérolémie, l'obésité abdominale, le diabète et le tabagisme dans le développement des affections cardiovasculaires comme l'infarctus du myocarde ou l'accident vasculaire cérébral. De larges études génétiques cas-contrôle ont contribué modestement à l'identification de gènes de susceptibilité au développement de ces FRCV. Une étude populationnelle offre par contre l'avantage d'effectuer des études associatives pour des traits phénotypiques continus correctement mesurés et aussi pour des traits de catégories utilisant des protocoles d'étude cas-contrôle très discordants. ~ Elle permet l'exploration des déterminants génétiques comme par exemple le syndrome métabolique. Cette approche permet également de procéder à des analyses de séquençage sur l'ADN des participants chez qui un trait phénotypique spécifique est étudié mais distribué de manière opposée. A titre d'exemple, le séquençage de l'ADN de participants à taux très élevé d'HDL-cholestérol versus très bas de ce marqueur lipidique permet d'identifier des variants génétiques rares localisés sur les parties codantes de gènes spécifiques associés aux dyslipidémies. Pour ce faire, nous avons recruté 6'188 personnes âgées de 35 à 75 ans, d'origine caucasienne et résidant en ville de Lausanne (3251 femmes et 2937 hommes). L'obtention d'un tel collectif a nécessité l'échantillonnage aléatoire de quelque 19'830 personnes de cette tranche d'âge. Les participants ont fait l'objet d'une anamnèse approfondie et d'un examen clinique. Le bilan était complété par une prise de sang pour le dosage de paramètres biologiques ainsi qu'une analyse .génétique. Cette dernière a été effectuée après extraction d'ADN au moyen d'une puce Affimetrix qui évalue la présence de quelques 500'000 SNPs. Les données récoltées lors de cette étude dévoilent que l'obésité (index de masse corporelle > 30 kg/m2), le tabagisme, l'hypertension (pression artérielle >_ 140/90 mmHg et/ou hypertension traitée), une dyslipidémie (LDL cholestérol élevé et/ou HDL cholestérol bas et/ou triglycéride élevé) et le diabète (glucose à jeun >_ 7 mmol/l et/ou traitement) affectent respectivement 947 (15,7%), 1673 (27%), 2268 (36,7%), 2113 (34,2%) et 407 (6,6%) participants. La prévalence de ces FRCV est plus marquée chez les hommes que chez les femmes. Dans les deux genres les prévalences de l'obésité, de l'hypertension et du diabète augmentent drastiquement avec l'âge. En conclusion la prévalence des FRCV est élevée au sein d'une population représentative de Lausanne âgée de 35 à 75 ans. A l'avenir, l'étude CoLaus constituera par la richesse de ses données phénotypiques et génétiques, une source unique pour investiguer l'épidémiologie et l'identification de gènes associés à ces FRCV.
Resumo:
While virtually absent in our diet a few hundred years ago, fructose has now become a major constituent of our modern diet. Our main sources of fructose are sucrose from beet or cane, high fructose corn syrup, fruits, and honey. Fructose has the same chemical formula as glucose (C(6)H(12)O(6)), but its metabolism differs markedly from that of glucose due to its almost complete hepatic extraction and rapid hepatic conversion into glucose, glycogen, lactate, and fat. Fructose was initially thought to be advisable for patients with diabetes due to its low glycemic index. However, chronically high consumption of fructose in rodents leads to hepatic and extrahepatic insulin resistance, obesity, type 2 diabetes mellitus, and high blood pressure. The evidence is less compelling in humans, but high fructose intake has indeed been shown to cause dyslipidemia and to impair hepatic insulin sensitivity. Hepatic de novo lipogenesis and lipotoxicity, oxidative stress, and hyperuricemia have all been proposed as mechanisms responsible for these adverse metabolic effects of fructose. Although there is compelling evidence that very high fructose intake can have deleterious metabolic effects in humans as in rodents, the role of fructose in the development of the current epidemic of metabolic disorders remains controversial. Epidemiological studies show growing evidence that consumption of sweetened beverages (containing either sucrose or a mixture of glucose and fructose) is associated with a high energy intake, increased body weight, and the occurrence of metabolic and cardiovascular disorders. There is, however, no unequivocal evidence that fructose intake at moderate doses is directly related with adverse metabolic effects. There has also been much concern that consumption of free fructose, as provided in high fructose corn syrup, may cause more adverse effects than consumption of fructose consumed with sucrose. There is, however, no direct evidence for more serious metabolic consequences of high fructose corn syrup versus sucrose consumption.
Resumo:
The resting metabolic rate (RMR) and body composition of 130 obese and nonobese prepubertal children, aged 6 to 10 years, were assessed by indirect calorimetry and skin-fold thickness, respectively. The mean (+/- SD) RMR was 4619 +/- 449 kJ.day-1 (164 +/- 31 kJ.kg body weight-1 x day-1) in the 62 boys and 4449 +/- 520 kJ.day-1 (147 +/- 32 kJ.kg body weight-1 x day-1) in the 68 girls. Fat-free mass was the best single predictor of RMR (R2 = 0.64; p < 0.001). Step-down multiple regression analysis, with independent variables such as age, gender, weight, and height, allowed several RMR predictive equations to be developed. An equation for boys is as follows: RMR (kJ.day-1) = 1287 + 28.6 x Weight(kg) + 23.6 x Height(cm) - 69.1 x Age(yr) (R2 = 0.58; p < 0.001). An equation for girls is as follows: RMR (kJ.day-1 = 1552 + 35.8 x Weight (kg) + 15.6 x Height (cm) - 36.3 x Age (yr) (R2 = 0.69; p < 0.001). Comparison between the measured RMR and that predicted by currently used formulas showed that most of these equations tended to overestimate the RMR of both genders, especially in overweight children.
Resumo:
AIM: Intensified insulin therapy has evolved to be the standard treatment of type 1 diabetes. However, it has been reported to increase significantly the risk of hypoglycaemia. We studied the effect of structured group teaching courses in flexible insulin therapy (FIT) on psychological and metabolic parameters in patients with type 1 diabetes. METHODS: We prospectively followed 45 type 1 diabetic patients of our outpatient clinic participating in 5 consecutive FIT teaching courses at the University Hospital of Basel. These courses consist of 7 weekly ambulatory evening group sessions. Patients were studied before and 1, 6, and 18 months after the course. Main outcome measures were glycated haemoglobin (HbA1c), severe hypoglycaemic events, quality of life (DQoL), diabetes self-control (IPC-9) and diabetes knowledge (DWT). RESULTS: Quality of life, self-control and diabetes knowledge improved after the FIT courses (all p<0.001). The frequency of severe hypoglycaemic events decreased ten-fold from 0.33 episodes/6 months at baseline to 0.03 episodes/6 months after 18 months (p<0.05). Baseline HbA1c was 7.2+/-1.1% and decreased in the subgroup with HbA1c > or = 8% from 8.4% to 7.8% (p<0.05). CONCLUSIONS: In an unselected, but relatively well-controlled population of type 1 diabetes, a structured, but not very time consuming FIT teaching programme in the outpatient setting improves psychological well-being and metabolic parameters.