119 resultados para local immune response


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The immune response to mouse mammary tumor virus (MMTV) relies on the presentation of an MMTV-encoded superantigen by infected B cells to superantigen-specific T cells. The initial extrafollicular B cell differentiation involved the generation of B cells expressing low levels of B220. These B220low B cells corresponded to plasmablasts that expressed high levels of CD43 and syndecan-1 and were CD62 ligand- and IgD-. Viral DNA was detected nearly exclusively in these B220low B cells by PCR, and retroviral type-A particles were observed in their cytoplasm by electron microscopy. An MMTV transmission to the offspring was also achieved after transfer of B220low CD62 ligand- CD43+ plasmablasts into noninfected females. These data suggest that B220low plasmablasts, representing the bulk of infected B cells, are capable of sustaining viral replication and may be involved in the transmission of MMTV.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A large percentage of healthy individuals (50-90%) is chronically infected with Cytomegalovirus (CMV). Over the past few years, several techniques were developed in order to monitor CMV-specific T-cell responses. In addition to the identification of antigen-specific T cells with peptide-loaded MHC complexes, most of the current strategies to identify CMV-specific T cells are centered on the assessment of the functions of memory T cells including their ability to mediate effector function, to proliferate or to secrete cytokines following antigen-specific stimulation. The investigation of these functions has allowed the characterization of the CMV-specific T-cell responses that are present during different phases of the infection. Furthermore, it has also been shown that the combination of virus-specific CD4 and CD8 T-cell responses are critical components of the immune response in the control of virus replication.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Needle-free procedures are very attractive ways to deliver vaccines because they diminish the risk of contamination and may reduce local reactions, pain or pain fear especially in young children with a consequence of increasing the vaccination coverage for the whole population. For this purpose, the possible development of a mucosal malaria vaccine was investigated. Intranasal immunization was performed in BALB/c mice using a well-studied Plasmodium berghei model antigen derived from the circumsporozoite protein with the modified heat-labile toxin of Escherichia coli (LTK63), which is devoid of any enzymatic activity compared to the wild type form. Here, we show that intranasal administration of the two compounds activates the T and B cell immune response locally and systemically. In addition, a total protection of mice is obtained upon a challenge with live sporozoites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Empirical testing of candidate vaccines has led to the successful development of a number of lifesaving vaccines. The advent of new tools to manipulate antigens and new methods and vectors for vaccine delivery has led to a veritable explosion of potential vaccine designs. As a result, selection of candidate vaccines suitable for large-scale efficacy testing has become more challenging. This is especially true for diseases such as dengue, HIV, and tuberculosis where there is no validated animal model or correlate of immune protection. Establishing guidelines for the selection of vaccine candidates for advanced testing has become a necessity. A number of factors could be considered in making these decisions, including, for example, safety in animal and human studies, immune profile, protection in animal studies, production processes with product quality and stability, availability of resources, and estimated cost of goods. The "immune space template" proposed here provides a standardized approach by which the quality, level, and durability of immune responses elicited in early human trials by a candidate vaccine can be described. The immune response profile will demonstrate if and how the candidate is unique relative to other candidates, especially those that have preceded it into efficacy testing and, thus, what new information concerning potential immune correlates could be learned from an efficacy trial. A thorough characterization of immune responses should also provide insight into a developer's rationale for the vaccine's proposed mechanism of action. HIV vaccine researchers plan to include this general approach in up-selecting candidates for the next large efficacy trial. This "immune space" approach may also be applicable to other vaccine development endeavors where correlates of vaccine-induced immune protection remain unknown.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The recruitment of dendritic cells to sites of infections and their migration to lymph nodes is fundamental for antigen processing and presentation to T cells. In the present study, we showed that antibody blockade of junctional adhesion molecule C (JAM-C) on endothelial cells removed JAM-C away from junctions and increased vascular permeability after L. major infection. This has multiple consequences on the output of the immune response. In resistant C57BL/6 and susceptible BALB/c mice, we found higher numbers of innate immune cells migrating from blood to the site of infection. The subsequent migration of dendritic cells (DCs) from the skin to the draining lymph node was also improved, thereby boosting the induction of the adaptive immune response. In C57BL/6 mice, JAM-C blockade after L. major injection led to an enhanced IFN-γ dominated T helper 1 (Th1) response with reduced skin lesions and parasite burden. Conversely, anti JAM-C treatment increased the IL-4-driven T helper 2 (Th2) response in BALB/c mice with disease exacerbation. Overall, our results show that JAM-C blockade can finely-tune the innate cell migration and accelerate the consequent immune response to L. major without changing the type of the T helper cell response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of well characterized recombinant or purified protein antigens (Ag) for vaccination is of interest for safety reasons and in the case where inactivated pathogens are not available (cancer, allergy). However it requires the addition of adjuvants such as Ag carrier or immune stimulators to potentiate their immunogenicity. In this study, we demonstrated that gas-filled microbubbles (MB) can serve as an efficient Ag delivery system to promote phagocytosis of the model Ag ovalbumin (OVA) without the need of ultrasound application. Once internalized by DC, OVA was processed and presented to both CD4 and CD8 T cells in vitro; such observations were coupled with the capacity of MB to activate DC. In vivo administration of MB-associated OVA in naïve wild-type Balb/c mice resulted in the induction of OVA-specific antibody and T cell responses. Detailed characterization of the generated immune response demonstrated the production of both IgG1 and IgG2a serum antibodies, as well as the secretion of IFN-γ and IL-10 by splenocytes. Interestingly, similar results were obtained with human DC in regards of Ag delivery and cell activation. Therefore, the data presented here settle the proof of principle for the further evaluation of MB-based immunomodulation studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fibroblast-like cells of secondary lymphoid organs (SLO) are important for tissue architecture. In addition, they regulate lymphocyte compartmentalization through the secretion of chemokines, and participate in the orchestration of appropriate cell-cell interactions required for adaptive immunity. Here, we provide data demonstrating the functional importance of SLO fibroblasts during Notch-mediated lineage specification and immune response. Genetic ablation of the Notch ligand Delta-like (DL)1 identified splenic fibroblasts rather than hematopoietic or endothelial cells as niche cells, allowing Notch 2-driven differentiation of marginal zone B cells and of Esam(+) dendritic cells. Moreover, conditional inactivation of DL4 in lymph node fibroblasts resulted in impaired follicular helper T cell differentiation and, consequently, in reduced numbers of germinal center B cells and absence of high-affinity antibodies. Our data demonstrate previously unknown roles for DL ligand-expressing fibroblasts in SLO niches as drivers of multiple Notch-mediated immune differentiation processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neutrophils are massively and rapidly recruited following infection. They migrate to the site of acute infection and also transiently to dLNs. In addition to their well-established role as microbial killers, accumulating evidence shows that neutrophils can play an immunoregulatory role. Neutrophils were recently shown to influence the activation of different leukocyte types including NK cells, B cells, and DCs. DCs are professional APCs playing a key role to the launching and regulation of the immune response; thus, crosstalk between neutrophils and resident or newly recruited DCs may have a direct impact on the development of the antigen-specific immune response and thereby, on the outcome of infection. Neutrophils may regulate DC recruitment and/or activation. We will review here recent progress in the field, including those presented during the first international symposium on "Neutrophil in Immunity", held in Québec, Canada, in June 2012, and discuss how neutrophil regulatory action on DCs may differ depending on the type of invading microorganism and local host factors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Infections with Leishmania parasites of the Leishmania Viannia subgenus give rise to both localized cutaneous (CL), and metastatic leishmaniasis. Metastasizing disease forms including disseminated (DCL) and mutocutaneous (MCL) leishmaniasis result from parasitic dissemination and lesion formation at sites distal to infection and have increased inflammatory responses. The presence of Leishmania RNA virus (LRV) in L. guyanensis parasites contributes to the exacerbation of disease and impacts inflammatory responses via activation of TLR3 by the viral dsRNA. In this study we investigated other innate immune response adaptor protein modulators and demonstrated that both MyD88 and TLR9 played a crucial role in the development of Th1-dependent healing responses against L. guyanensis parasites regardless of their LRV status. The absence of MyD88- or TLR9-dependent signaling pathways resulted in increased Th2 associated cytokines (IL-4 and IL-13), which was correlated with low transcript levels of IL-12p40. The reliance of IL-12 was further confirmed in IL12AB-/- mice, which were completely susceptible to infection. Protection to L. guyanensis infection driven by MyD88- and TLR9-dependent immune responses arises independently to those induced due to high LRV burden within the parasites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Investment of resources in immune defences, despite obvious short-term benefits, may be detrimental to long-term maintenance and thus decrease longevity in absence of parasites. In addition, females and males may differ in immune investment and intrinsic longevity because they are subjected to different degrees of sexual competition and extrinsic mortality. In order to test if sex-specific investment in mounting an immune response reduced longevity, we compared the longevity of captive male and female common voles Microtus arvalis regularly challenged with keyhole limpet haemocyanin, an antigen which elicits the production of antibodies, to the longevity of voles injected with the corresponding antigen-free buffer (phosphate-buffered saline). Injections were repeated every 28 days to mimic a chronic infection. The magnitude of immune response did not vary between males and females and did not affect longevity. Overall, females lived longer than males, independently of the immune challenge. Thus, the long-term costs of immunity seem small in voles. The longevity pattern is consistent with the prediction that male-biased predation or parasitism in the wild causes reduced intrinsic lifespan, but this reduction is not mediated by a decrease in male immunity

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Infection with Helicobacter induces a T helper type 1 response in mice and humans. Mice can be cured or protected from infection with Helicobacter by mucosal immunization with recombinant H. pylori urease B subunit (rUreB). This study characterizes the immune response of infected mice immunized with rUreB. METHODS: BALB/c mice were infected with H. felis. Two weeks later, they were orally immunized four times with rUreB and cholera toxin (CT) at weekly intervals. Controls were only infected or sham-immunized with CT. Animals were killed at various times after immunization. Splenic CD4(+) cells were obtained and cultured in vitro with rUreB to evaluate antigen-specific proliferation and induction of interferon gamma and interleukin 4 secretion. RESULTS: All rUreB-immunized mice (n = 8) were cured from infection 3 weeks after the fourth immunization. Immunization induced a proliferative response of splenic CD4(+) cells, a progressive decrease in interferon gamma secretion, and a concomitant increase in interleukin 4 secretion after each immunization. A simultaneous increase in rUreB specific serum immunoglobulin G1 levels was observed in infected/immunized mice. CONCLUSIONS: In BALB/c mice, therapeutic mucosal immunization with rUreB induces progressively a Th2 CD4(+) T cell response resulting in the elimination of the pathogen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eumelanin and pheomelanin are the main endogenous pigments in animals and melanin-based coloration has multiple functions. Melanization is associated with major life-history traits, including immune and stress response, possibly because of pleiotropic effects of genes that control melanogenesis. The net effects on pheo- versus eumelanization and other life-history traits may depend on the antagonistic effects of the genes that trigger the biosynthesis of either melanin form. Covariation between melanin-based pigmentation and fitness traits enforced by pleiotropic genes has major evolutionary implications particularly for socio-sexual communication. However, evidence from non-model organisms in the wild is limited to very few species. Here, we tested the hypothesis that melanin-based coloration of barn swallow (Hirundo rustica) throat and belly feathers covaries with acquired immunity and activation of the hypothalamic-pituitary-adrenal (HPA) axis, as gauged by corticosterone plasma levels. Individuals of both sexes with darker brownish belly feathers had weaker humoral immune response, while darker males had higher circulating corticosterone levels only when parental workload was experimentally reduced. Because color of belly feathers depends on both eu- and pheomelanin, and its darkness decreases with an increase in the concentration of eu- relative to pheomelanin, these results are consistent with our expectation that relatively more eu- than pheomelanized individuals have better immune response and smaller activation of the HPA-axis. Covariation of immune and stress response arose for belly but not throat feather color, suggesting that any function of color as a signal of individual quality or of alternative life-history strategies depends on plumage region.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

B cells can either differentiate in germinal centers or in extrafollicular compartments of secondary lymphoid organs. Here we show the migration properties of B cells after differentiation in murine peripheral lymph node infected with mouse mammary tumor virus. Naive B cells become activated, infected, and carry integrated retroviral DNA sequences. After production of a retroviral superantigen, the infected B cells receive cognate T cell help and differentiate along the two main differentiation pathways analogous to classical Ag responses. The extrafollicular differentiation peaks on day 6 of mouse mammary tumor virus infection, and the follicular one becomes detectable after day 10. B cells participating in this immune response carry a retroviral DNA marker that can be detected by using semiquantitative PCR. We determined the migration patterns of B cells having taken part in the T cell-B cell interaction from the draining lymph node to different tissues. Waves of immigration and retention of infected cells in secondary lymphoid organs, mammary gland, salivary gland, skin, lung, and liver were observed correlating with the two peaks of B cell differentiation in the draining lymph node. Other organs revealed immigration of infected cells at later time points. The migration properties were correlated with a strong up-regulation of alpha(4)beta(1) integrin expression. These results show the migration properties of B cells during an immune response and demonstrate that a large proportion of extrafolliculary differentiating plasmablasts can escape local cell death and carry the retroviral infection to peripheral organs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

EBV has been consistently associated with MS, but its signature in the CNS has rarely been examined. In this study, we assessed EBV-specific humoral and cellular immune responses in the cerebrospinal fluid (CSF) of patients with early MS, other inflammatory neurological diseases (OIND) and non-inflammatory neurological diseases (NIND). The neurotropic herpesvirus CMV served as a control. Virus-specific humoral immune responses were assessed in 123 consecutive patients and the intrathecal recruitment of virus-specific antibodies was expressed as antibody indexes. Cellular immune responses tested in the blood of 55/123 patients were positive in 46/55. The CD8(+) CTL responses of these 46 patients were assessed in the blood and CSF using a CFSE-based CTL assay. We found that viral capsid antigen and EBV-encoded nuclear antigen-1, but not CMV IgG antibody indexes, were increased in early MS as compared with OIND and NIND patients. There was also intrathecal enrichment in EBV-, but not CMV-specific, CD8(+) CTL in early MS patients. By contrast, OIND and NIND patients did not recruit EBV- nor CMV-specific CD8(+) CTL in the CSF. Our data, showing a high EBV-, but not CMV-specific intrathecal immune response, strengthen the association between EBV and MS, in particular at the onset of the disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AbstractAspergillus fumigatus is a ubiquitous mould that can cause invasive aspergillosis, a potentially lethal infection in onco-hematological patients. With an incidence rate ranging from 5 to 15%, invasive aspergillosis (IA) is one of the most frequent infections in patients undergoing intensive myeloablative chemotherapy for acute leukaemia or allogenic hematopoietic stem cell transplantation (HSCT). Toll-like receptors (TLRs) are transmembrane proteins located in immune cells, such as macrophages sand dendritic cells, that detect molecular motifs from invading pathogens to initiate immune response mechanisms. Studies suggested a role for TLR2 and TLR4 in the detection of A. fumigatus. However, few data are available on the role of TLR1 and TLR6, both known as TLR2 co-receptors, in innate immune responses to this pathogen.In this study, we used an immunogenic mutant strain of A. fumigatus, together with a wild-type strain, to analyse the role of TLRs and their signalling pathways in the innate immune response to this mould. We show for the first time that this response involves both TLR1 and TLR6 in mouse and TLR1, but not TLR6, in human. We show that, despite the high sequence homology between TLR1 and TLR6, the specificity in the sensing of A. fumigatus relies on the human TLR1 and TLR6 ectodomains. Furthermore, we show that two human single nucleotide polymorphisms (SNPs) (G1805T [S6021] and G239C [R80T]) affect the response to this pathogen. Our work also confirms the role of TLR2 and TLR4 in the detection of A. fumigatus, together with their co-receptors CD 14 and MD2, in both mouse and human, and highlights the nature of the intracellular signaling pathway used by these receptors to mediate the immune response against this pathogen.This study provides a comprehensive analysis of the role of TLRs and their signalling pathways in the innate immune recognition of A. fumigatus and may have important consequences for diagnosis, management and treatment of IA in high risk patients.RésuméAspergillus fumigatus est un champignon saprophyte ubiquitaire qui peut causer l'aspergillose invasive (AI), une infection potentiellement mortelle chez les patients onco-hématologiques. Avec un taux d'incidence de 5 à 15%, l'AI est l'une des infections les plus fréquentes chez les patients subissant une chimiothérapie intensive pour une leucémie aiguë ou une allogreffe de cellules souches hématopoïétiques. Les récepteurs Toll-like (Toll-like receptors, TLRs) sont des protéines transmembranaires placés stratégiquement à la surface de certaines cellules immunitaires, comme les macrophages et les cellules dendritiques. Ces protéines sont capables de détecter des motifs moléculaires à la surface des pathogènes et de déclencher la réponse immunitaire innée. Des études ont suggéré l'implication de TLR2 et TLR4 dans la détection dΆ. fumigatus. Cependant, peu de données sont disponibles sur le rôle de TLR1 et TLR6, qui sont les co-récepteurs de TLR2, dans ce mécanisme de défense immunitaire.Dans cette étude, nous avons utilisé une souche particulièrement immunogénique d'A. fumigatus, ainsi qu'une souche sauvage, pour analyser l'implication des récepteurs TLRs dans la réponse immunitaire à ce champignon filamenteux. Nous montrons pour la première fois que cette détection implique TLR1 et TLR6 chez la souris, et TLR1, mais pas TLR6, chez l'homme. Nous montrons également que la spécificité de détection chez l'homme est due à des séquences spécifiques du domaine extra- membranaire de TLR1 et TLR6, et que des polymorphismes mono-nucléotidiques du récepteur (G1805T [S602I] and G239C [R80T]) influencent la réponse à ce pathogène. Nous confirmons également l'implication de TLR2 et TLR4, avec leurs co-récepteurs CD14 et MD2, dans la détection d'A. fumigatus, chez l'homme et la souris, et mettons en évidence les voies de signalisation cellulaires impliquées dans la réponse immunitaire à ce pathogène.Ces nouvelles connaissances sur le rôle des TLRs et de leurs voies de signalisation cellulaire dans la détection immunitaire innée d'A. fumigatus pourraient influencer le diagnostic, la prévention et le traitement de l'AI chez les patients à haut risque de développer cette infection.