201 resultados para image normalization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional imaging for the quantification of myocardial motion is a key step in the evaluation of cardiac disease. A tagged magnetic resonance imaging method that automatically tracks myocardial displacement in three dimensions is presented. Unlike other techniques, this method tracks both in-plane and through-plane motion from a single image plane without affecting the duration of image acquisition. A small z-encoding gradient is subsequently added to the refocusing lobe of the slice-selection gradient pulse in a slice following CSPAMM acquisition. An opposite polarity z-encoding gradient is added to the orthogonal tag direction. The additional z-gradients encode the instantaneous through plane position of the slice. The vertical and horizontal tags are used to resolve in-plane motion, while the added z-gradients is used to resolve through-plane motion. Postprocessing automatically decodes the acquired data and tracks the three-dimensional displacement of every material point within the image plane for each cine frame. Experiments include both a phantom and in vivo human validation. These studies demonstrate that the simultaneous extraction of both in-plane and through-plane displacements and pathlines from tagged images is achievable. This capability should open up new avenues for the automatic quantification of cardiac motion and strain for scientific and clinical purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel approach for analyzing single-trial electroencephalography (EEG) data, using topographic information. The method allows for visualizing event-related potentials using all the electrodes of recordings overcoming the problem of previous approaches that required electrode selection and waveforms filtering. We apply this method to EEG data from an auditory object recognition experiment that we have previously analyzed at an ERP level. Temporally structured periods were statistically identified wherein a given topography predominated without any prior information about the temporal behavior. In addition to providing novel methods for EEG analysis, the data indicate that ERPs are reliably observable at a single-trial level when examined topographically.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semisupervised support vector machine is presented for the classification of remote sensing images. The method exploits the wealth of unlabeled samples for regularizing the training kernel representation locally by means of cluster kernels. The method learns a suitable kernel directly from the image and thus avoids assuming a priori signal relations by using a predefined kernel structure. Good results are obtained in image classification examples when few labeled samples are available. The method scales almost linearly with the number of unlabeled samples and provides out-of-sample predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the types of remote sensing acquisitions, optical images are certainly one of the most widely relied upon data sources for Earth observation. They provide detailed measurements of the electromagnetic radiation reflected or emitted by each pixel in the scene. Through a process termed supervised land-cover classification, this allows to automatically yet accurately distinguish objects at the surface of our planet. In this respect, when producing a land-cover map of the surveyed area, the availability of training examples representative of each thematic class is crucial for the success of the classification procedure. However, in real applications, due to several constraints on the sample collection process, labeled pixels are usually scarce. When analyzing an image for which those key samples are unavailable, a viable solution consists in resorting to the ground truth data of other previously acquired images. This option is attractive but several factors such as atmospheric, ground and acquisition conditions can cause radiometric differences between the images, hindering therefore the transfer of knowledge from one image to another. The goal of this Thesis is to supply remote sensing image analysts with suitable processing techniques to ensure a robust portability of the classification models across different images. The ultimate purpose is to map the land-cover classes over large spatial and temporal extents with minimal ground information. To overcome, or simply quantify, the observed shifts in the statistical distribution of the spectra of the materials, we study four approaches issued from the field of machine learning. First, we propose a strategy to intelligently sample the image of interest to collect the labels only in correspondence of the most useful pixels. This iterative routine is based on a constant evaluation of the pertinence to the new image of the initial training data actually belonging to a different image. Second, an approach to reduce the radiometric differences among the images by projecting the respective pixels in a common new data space is presented. We analyze a kernel-based feature extraction framework suited for such problems, showing that, after this relative normalization, the cross-image generalization abilities of a classifier are highly increased. Third, we test a new data-driven measure of distance between probability distributions to assess the distortions caused by differences in the acquisition geometry affecting series of multi-angle images. Also, we gauge the portability of classification models through the sequences. In both exercises, the efficacy of classic physically- and statistically-based normalization methods is discussed. Finally, we explore a new family of approaches based on sparse representations of the samples to reciprocally convert the data space of two images. The projection function bridging the images allows a synthesis of new pixels with more similar characteristics ultimately facilitating the land-cover mapping across images.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé de la thèse Le travail de thèse «VOIR LE MONDE COMME UNE IMAGE. Le schème de l'image mimétique dans la philosophie de Platon (Cratyle, Sophiste, Timée) » d'Alexandre NEVSKY étudie la conception philosophique de l'image chez Platon. En posant la question : qu'est-ce que l'image pour Platon? l'étude se propose, dans un premier temps, d'analyser la manière précise dont l'idée de l'image fonctionne dans l'articulation logique de l'enquête platonicienne, en se basant avant tout sur trois dialogues majeurs où cette idée est explicitement thématisée par Platon lui-même, à savoir le Cratyle, le Sophiste et le Timée. Par une analyse détaillée de ces textes, Alexandre Nevsky essaie de démontrer que l'idée de l'image fonctionne comme un schème euristique dont la logique interne détermine les moments clés dans le déroulement de chaque dialogue examiné, et constitue ainsi une véritable méthode d'investigation philosophique pour Platon. En suivant cette stratégie platonicienne, l'auteur nous montre quel rôle le schème de l'image joue selon Platon d'abord dans la constitution du langage (le Cratyle), puis, dans celle du discours (le Sophiste) et, enfin, dans celle du monde (le Timée). Une telle approche lui permet de revoir l'interprétation traditionnelle de certains passages clés, célèbres pour leurs difficultés, en mettant en évidence la façon dont la nouvelle perspective platonicienne, introduite grâce au schème de l'image, permet de formuler une solution philosophique originale du problème initial. On y trouve ainsi rediscutés, pour ne citer que quelques exemples, la théorie curieuse de l'imitation phonétique et le problème de la justesse propre du nom-image, la définition philosophique de la notion d'image et la distinction platonicienne entre limage-ressemblance et l'image-apparence, la logique paradoxale de l'introduction d'un troisième genre dans la structure ontologique de l'être et la question du sens exact à donner au «discours vraisemblable » de Platon sur la naissance de l'univers. Dans un deuxième temps, cette étude tente de dégager, derrière la méthode heuristique basée sur le schème de l'image, une véritable conception de l'image mimétique chez Platon. L'une des idées principales de la thèse est ici de montrer que cette conception présente une solution philosophique de Platon au problème de l'apparence archaïque. Car, face à la question sophistique : comment une chose - que ce soit le discours ou le monde - peut-elle être une apparence, quelque chose qui n'existe pas? Platon apporte une réponse tout à fait originale elle le peut en tant qu'image. Or, l'image n'est pas une simple apparence illusoire, elle est le reflet d'une autre réalité, indépendante et véritable, que l'on doit supposer, selon Platon, même quand sa nature exacte nous échappe encore. La conception platonicienne de l'image apparaît ainsi comme un pendant indispensable de la théorie des Formes intelligibles et aussi comme son étape préalable au niveau de laquelle l'âme du philosophe, dans son ascension vers la vérité, se retrouve dans un espace intermédiaire, déjà au-delà des illusions du monde phénoménal, mais encore en-deçà des engagements métaphysiques de la théorie des Formes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Development of the fetal brain surfacewith concomitant gyrification is one of the majormaturational processes of the human brain. Firstdelineated by postmortem studies or by ultrasound, MRIhas recently become a powerful tool for studying in vivothe structural correlates of brain maturation. However,the quantitative measurement of fetal brain developmentis a major challenge because of the movement of the fetusinside the amniotic cavity, the poor spatial resolution,the partial volume effect and the changing appearance ofthe developing brain. Today extensive efforts are made todeal with the âeurooepost-acquisitionâeuro reconstruction ofhigh-resolution 3D fetal volumes based on severalacquisitions with lower resolution (Rousseau, F., 2006;Jiang, S., 2007). We here propose a framework devoted tothe segmentation of the basal ganglia, the gray-whitetissue segmentation, and in turn the 3D corticalreconstruction of the fetal brain. Method. Prenatal MRimaging was performed with a 1-T system (GE MedicalSystems, Milwaukee) using single shot fast spin echo(ssFSE) sequences in fetuses aged from 29 to 32gestational weeks (slice thickness 5.4mm, in planespatial resolution 1.09mm). For each fetus, 6 axialvolumes shifted by 1 mm were acquired (about 1 min pervolume). First, each volume is manually segmented toextract fetal brain from surrounding fetal and maternaltissues. Inhomogeneity intensity correction and linearintensity normalization are then performed. A highspatial resolution image of isotropic voxel size of 1.09mm is created for each fetus as previously published byothers (Rousseau, F., 2006). B-splines are used for thescattered data interpolation (Lee, 1997). Then, basalganglia segmentation is performed on this superreconstructed volume using active contour framework witha Level Set implementation (Bach Cuadra, M., 2010). Oncebasal ganglia are removed from the image, brain tissuesegmentation is performed (Bach Cuadra, M., 2009). Theresulting white matter image is then binarized andfurther given as an input in the Freesurfer software(http://surfer.nmr.mgh.harvard.edu/) to provide accuratethree-dimensional reconstructions of the fetal brain.Results. High-resolution images of the cerebral fetalbrain, as obtained from the low-resolution acquired MRI,are presented for 4 subjects of age ranging from 29 to 32GA. An example is depicted in Figure 1. Accuracy in theautomated basal ganglia segmentation is compared withmanual segmentation using measurement of Dice similarity(DSI), with values above 0.7 considering to be a verygood agreement. In our sample we observed DSI valuesbetween 0.785 and 0.856. We further show the results ofgray-white matter segmentation overlaid on thehigh-resolution gray-scale images. The results arevisually checked for accuracy using the same principlesas commonly accepted in adult neuroimaging. Preliminary3D cortical reconstructions of the fetal brain are shownin Figure 2. Conclusion. We hereby present a completepipeline for the automated extraction of accuratethree-dimensional cortical surface of the fetal brain.These results are preliminary but promising, with theultimate goal to provide âeurooemovieâeuro of the normal gyraldevelopment. In turn, a precise knowledge of the normalfetal brain development will allow the quantification ofsubtle and early but clinically relevant deviations.Moreover, a precise understanding of the gyraldevelopment process may help to build hypotheses tounderstand the pathogenesis of several neurodevelopmentalconditions in which gyrification have been shown to bealtered (e.g. schizophrenia, autismâeuro¦). References.Rousseau, F. (2006), 'Registration-Based Approach forReconstruction of High-Resolution In Utero Fetal MR Brainimages', IEEE Transactions on Medical Imaging, vol. 13,no. 9, pp. 1072-1081. Jiang, S. (2007), 'MRI of MovingSubjects Using Multislice Snapshot Images With VolumeReconstruction (SVR): Application to Fetal, Neonatal, andAdult Brain Studies', IEEE Transactions on MedicalImaging, vol. 26, no. 7, pp. 967-980. Lee, S. (1997),'Scattered data interpolation with multilevel B-splines',IEEE Transactions on Visualization and Computer Graphics,vol. 3, no. 3, pp. 228-244. Bach Cuadra, M. (2010),'Central and Cortical Gray Mater Segmentation of MagneticResonance Images of the Fetal Brain', ISMRM Conference.Bach Cuadra, M. (2009), 'Brain tissue segmentation offetal MR images', MICCAI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Suite aux recentes avancées technologiques, les archives d'images digitales ont connu une croissance qualitative et quantitative sans précédent. Malgré les énormes possibilités qu'elles offrent, ces avancées posent de nouvelles questions quant au traitement des masses de données saisies. Cette question est à la base de cette Thèse: les problèmes de traitement d'information digitale à très haute résolution spatiale et/ou spectrale y sont considérés en recourant à des approches d'apprentissage statistique, les méthodes à noyau. Cette Thèse étudie des problèmes de classification d'images, c'est à dire de catégorisation de pixels en un nombre réduit de classes refletant les propriétés spectrales et contextuelles des objets qu'elles représentent. L'accent est mis sur l'efficience des algorithmes, ainsi que sur leur simplicité, de manière à augmenter leur potentiel d'implementation pour les utilisateurs. De plus, le défi de cette Thèse est de rester proche des problèmes concrets des utilisateurs d'images satellite sans pour autant perdre de vue l'intéret des méthodes proposées pour le milieu du machine learning dont elles sont issues. En ce sens, ce travail joue la carte de la transdisciplinarité en maintenant un lien fort entre les deux sciences dans tous les développements proposés. Quatre modèles sont proposés: le premier répond au problème de la haute dimensionalité et de la redondance des données par un modèle optimisant les performances en classification en s'adaptant aux particularités de l'image. Ceci est rendu possible par un système de ranking des variables (les bandes) qui est optimisé en même temps que le modèle de base: ce faisant, seules les variables importantes pour résoudre le problème sont utilisées par le classifieur. Le manque d'information étiquétée et l'incertitude quant à sa pertinence pour le problème sont à la source des deux modèles suivants, basés respectivement sur l'apprentissage actif et les méthodes semi-supervisées: le premier permet d'améliorer la qualité d'un ensemble d'entraînement par interaction directe entre l'utilisateur et la machine, alors que le deuxième utilise les pixels non étiquetés pour améliorer la description des données disponibles et la robustesse du modèle. Enfin, le dernier modèle proposé considère la question plus théorique de la structure entre les outputs: l'intègration de cette source d'information, jusqu'à présent jamais considérée en télédétection, ouvre des nouveaux défis de recherche. Advanced kernel methods for remote sensing image classification Devis Tuia Institut de Géomatique et d'Analyse du Risque September 2009 Abstract The technical developments in recent years have brought the quantity and quality of digital information to an unprecedented level, as enormous archives of satellite images are available to the users. However, even if these advances open more and more possibilities in the use of digital imagery, they also rise several problems of storage and treatment. The latter is considered in this Thesis: the processing of very high spatial and spectral resolution images is treated with approaches based on data-driven algorithms relying on kernel methods. In particular, the problem of image classification, i.e. the categorization of the image's pixels into a reduced number of classes reflecting spectral and contextual properties, is studied through the different models presented. The accent is put on algorithmic efficiency and the simplicity of the approaches proposed, to avoid too complex models that would not be used by users. The major challenge of the Thesis is to remain close to concrete remote sensing problems, without losing the methodological interest from the machine learning viewpoint: in this sense, this work aims at building a bridge between the machine learning and remote sensing communities and all the models proposed have been developed keeping in mind the need for such a synergy. Four models are proposed: first, an adaptive model learning the relevant image features has been proposed to solve the problem of high dimensionality and collinearity of the image features. This model provides automatically an accurate classifier and a ranking of the relevance of the single features. The scarcity and unreliability of labeled. information were the common root of the second and third models proposed: when confronted to such problems, the user can either construct the labeled set iteratively by direct interaction with the machine or use the unlabeled data to increase robustness and quality of the description of data. Both solutions have been explored resulting into two methodological contributions, based respectively on active learning and semisupervised learning. Finally, the more theoretical issue of structured outputs has been considered in the last model, which, by integrating outputs similarity into a model, opens new challenges and opportunities for remote sensing image processing.