189 resultados para hierarchical classification structures
Resumo:
In colonies of social Hymenoptera (which include all ants, as well as some wasp and bee species), only queens reproduce whereas workers generally perform other tasks. The evolution of worker's reproductive altruism can be explained by kin selection, which states that workers can indirectly transmit copies of their genes by helping the reproduction of relatives. The relatedness between queens and workers may however be low, particularly when there are multiple queens per colony, which limits the transmission of copies of workers genes and increases potential conflicts between colony members. In this thesis, we investigated the link between social structure variations and conflicts, and explored the mechanisms involved in variation of colony queen number in ants. According to kin selection, workers should rear the brood they are most related to. In social Hymenoptera, males are haploid whereas females (workers and queens) are diploid. As a result, workers can be up to three times more related to females than males in some colonies, where they should consequently favour the production of females. In contrast, queens are equally related to daughters and sons in all types of colonies and therefore should favour a balanced sex ratio. In a meta-analysis across all studies of social Hymenoptera, we showed that colony sex ratio is generally largely influenced by workers. Hence, the evolution of social structures where queens and workers are equally related to males and females may contribute to decrease the conflict between the two castes over colony sex ratio. Another conflict between queens and workers can occur over male production. Many species contain workers that still have the ability to lay haploid eggs. In some social structures, workers are on average more related to sons of queens than to sons of other workers. As a result, workers should eliminate worker-laid eggs to favour queen-laid eggs. We showed that in the ant Formica selysi, workers eliminate more worker-laid than queen-laid eggs, independently of colony social structure. These results therefore suggest that worker policing can evolve independently from relatedness, potentially because of costs of worker reproduction at the colony-level. Colony queen number is a key parameter that influences relatedness between group members. Queen body size is generally linked to the success of independent colony foundation by single queens and may influence the number of queens in the new colony. In the ant F. selysi, single-queen colonies produce larger queens than multiple-queen colonies. We showed that this association results from genes or maternal effects transmitted to the eggs. However, we also found that queens produced in colonies of the two social forms did not differ in their general ability to found new colonies independently. Queen body size may also influence queen dispersal ability and constrain small queens to be re-adopted in their original nest after mating at proximity. We tested the acceptance of new queens in another ant species, Formica paralugubris, which has numerous queens per colony. Our results show that workers do not discriminate between nestmate and foreign queens, and more generally accept new queens at a limited rate. To conclude, this thesis shows that mechanisms influencing variation in colony queen number and the influence of these changes on conflict resolution are complex. Data gathered in this thesis therefore constitute a solid background for further research on the evolution and the maintenance of complex organisations in insect societies.
Resumo:
Diagnosis of several neurological disorders is based on the detection of typical pathological patterns in the electroencephalogram (EEG). This is a time-consuming task requiring significant training and experience. Automatic detection of these EEG patterns would greatly assist in quantitative analysis and interpretation. We present a method, which allows automatic detection of epileptiform events and discrimination of them from eye blinks, and is based on features derived using a novel application of independent component analysis. The algorithm was trained and cross validated using seven EEGs with epileptiform activity. For epileptiform events with compensation for eyeblinks, the sensitivity was 65 +/- 22% at a specificity of 86 +/- 7% (mean +/- SD). With feature extraction by PCA or classification of raw data, specificity reduced to 76 and 74%, respectively, for the same sensitivity. On exactly the same data, the commercially available software Reveal had a maximum sensitivity of 30% and concurrent specificity of 77%. Our algorithm performed well at detecting epileptiform events in this preliminary test and offers a flexible tool that is intended to be generalized to the simultaneous classification of many waveforms in the EEG.
Resumo:
Microsatellites are used to unravel the fine-scale genetic structure of a hybrid zone between chromosome races Valais and Cordon of the common shrew (Sorex araneus) located in the French Alps. A total of 269 individuals collected between 1992 and 1995 was typed for seven microsatellite loci. A modified version of the classical multiple correspondence analysis is carried out. This analysis clearly shows the dichotomy between the two races. Several approaches are used to study genetic structuring. Gene flow is clearly reduced between these chromosome races and is estimated at one migrant every two generations using X-statistics and one migrant per generation using F-statistics. Hierarchical F- and R-statistics are compared and their efficiency to detect inter- and intraracial patterns of divergence is discussed. Within-race genetic structuring is significant, but remains weak. F-ST displays similar values on both sides of the hybrid zone, although no environmental barriers are found on the Cordon side, whereas the Valais side is divided by several mountain rivers. We introduce the exact G-test to microsatellite data which proved to be a powerful test to detect genetic differentiation within as well as among races. The genetic background of karyotypic hybrids was compared with the genetic background of pure parental forms using a CRT-MCA. Our results indicate that, without knowledge of the karyotypes, we would not have been able to distinguish these hybrids from karyotypically pure samples.
Resumo:
In the context of Systems Biology, computer simulations of gene regulatory networks provide a powerful tool to validate hypotheses and to explore possible system behaviors. Nevertheless, modeling a system poses some challenges of its own: especially the step of model calibration is often difficult due to insufficient data. For example when considering developmental systems, mostly qualitative data describing the developmental trajectory is available while common calibration techniques rely on high-resolution quantitative data. Focusing on the calibration of differential equation models for developmental systems, this study investigates different approaches to utilize the available data to overcome these difficulties. More specifically, the fact that developmental processes are hierarchically organized is exploited to increase convergence rates of the calibration process as well as to save computation time. Using a gene regulatory network model for stem cell homeostasis in Arabidopsis thaliana the performance of the different investigated approaches is evaluated, documenting considerable gains provided by the proposed hierarchical approach.
Resumo:
Bordetella pertussis is the bacterial agent of whooping cough in humans. Under iron-limiting conditions, it produces the siderophore alcaligin. Released to the extracellular environment, alcaligin chelates iron, which is then taken up as a ferric alcaligin complex via the FauA outer membrane transporter. FauA belongs to a family of TonB-dependent outer membrane transporters that function using energy derived from the proton motive force. Using an in-house protocol for membrane-protein expression, purification and crystallization, FauA was crystallized in its apo form together with three other TonB-dependent transporters from different organisms. Here, the protocol used to study FauA is described and its three-dimensional structure determined at 2.3 A resolution is discussed.
Resumo:
Résumé Les Soricidae sont l'une des plus grandes familles de mammifères avec plus de 300 espèces décrites. Elle a été récemment divisée en trois sous-familles, les Soricidae, qui sont distribuées dans la région Holarctique, les Crocidurinae en Afrique et en Eurasie, et les Myosoricinae en Afrique. La diversité spécifique de cette famille a conduit à des interprétations taxonomiques multiples, qui sont à l'origine de polémiques entre spécialistes, et même les premiers résultats moléculaires ont été fortement contradictoires. Le but de cette thèse est donc d'appliquer des meilleures techniques sur des échantillons mieux ciblés, afin de résoudre les contradictions taxonomiques et comprendre l'histoire de cette famille. Par le biais de marqueurs génétiques mitochondriaux et nucléaires, j'ai étudié: (i) Les relations taxonomiques à différent niveaux hiérarchiques au sein des Soricidae, c'est-à dire, entre les sous-familles, tribus, et genres, ainsi qu'au sein de deux complexes d'espèces largement distribués, et d'une espèce européenne, le but étant d'établir la congruence entre les données génétiques et les interprétations morphologiques classiques. (ii) Les relations biogéographiques, soit l'origine potentielle des différentes sous-familles, tribus, et genres, le nombre d'échanges intercontinentaux, ainsi que la structure phylogéographique à un niveau (péri)-spécifique, afin d'établir l'histoire de la diversification de cette famille. Les analyses combinées d'ADN mitochondrial et nucléaire ont montré un rapport clair entre les taxa à un niveau taxonomique élevé, mettant en évidence les rapports entre les sous-familles, les tribus, et les genres. Bien que Myosorex constitue un groupe monophylétique distinct, sa définition en tant que sous-famille séparée ne peut pas être reconnue. Ainsi, nous proposons d'attribuer un niveau de tribu pour ce clade (inclus dans les Crocidurinae). Nous avons également montré l'inclusion du genre Anourosorex dans les Soricinae et non en position basale dans les Soricidae. Au sein des Crocidurinae, Suncus s'est révélé être paraphylétique, et le genre Diplomesodon devrait être considéré d'un point de vue génétique comme invalide, puisque il se trouve au sein du clade du genre Crocidura. À un niveau taxonomique plus bas, nous avons montré la monophylie de deux complexes d'espèces largement distribués, le groupe de C. suaveolens et de C. olivieri. Néanmoins à l'intérieur de ceux-ci, des différences majeures avec la classification morphologique se sont révélées. Par exemples, C. sibirica n'est pas une espèce valide, les analyses de phylogénie moléculaire ne montrant pas de variations génétiques entre celle-ci et un échantillon de la localité type de C. suaveolens. D'un point de vue biogéographique, les fluctuations climatiques et les activités tectoniques des 20 derniers millions d'années ont fortement influencé la diversité actuelle des Soricidae. À un niveau taxonomique élevé, l'apparition de connexions de terre temporaires entre le Vieux et le Nouveau Monde au Miocène moyen ont mené à plusieurs colonisations indépendantes de l'Amérique par les Soricinae. Celles-ci ónt conduit à une diversification d'une tribu (Notiosoricini), ainsi que de genres (par ex: Cryptotis, Blarina) et d'un sous-genre (Otisorex) endémique au Néarctique. Dans le Vieux Monde, les barrières entre l'Afrique et Eurasie étaient plus perméables, menant à plusieurs échanges bidirectionnels de Crocidurinae. La diversification des clades principaux s'est produite au Miocène, certains clades étant endémiques d'Afrique ou d'Eurasie, tandis que d'autres se sont diversifiés à travers le Vieux Monde. À un niveau spécifique ou péri-spécifique, la fluctuation climatique du Pliocène et les glaciations du Pléistocène ont fortement divisé les populations dans tout le Paléarctique, menant à des entités génétiques distinctes. En Europe, les populations du groupe de C. suaveolens ont été divisées en une lignée Sud-Ouest et une Sud-Est, alors qu'au Proche-Orient et au Moyen-Orient, la diversité de clades est plus importante. En conclusion, mes études ont révélé que du Miocène à nos jours, la diversification des Soricidae a été provoquée par la colonisation de nouveaux habitats (dispersion), ainsi que par l'isolement des populations par diverses barrières (vicariance). Abstract The Soricidae is one of the largest mammalian families with more than 300 species described. It has been recently divided into three subfamilies, the Soricinae, which are distributed in the Holartic region, the Crocidurinae in Africa and Eurasia, and the Myosoricinae in Africa. The specific diversity of this family have led to multiple systematic interpretations and controversies between authors. Fortunately, today, cytotaxonomic, allozymic and molecular studies have permitted to clarify some uncertainties. Nevertheless, the Soricidae remains still poorly known. In this thesis, we aim at understanding with the use of mitochondrial and nuclear markers: (i) the taxonomic relationships at different hierarchical levels within Soricidae, i.e., between the subfamilies, tribes, and genera, as well as within two largely distributed species complexes, and within a European species, the goal being to establish congruence between the genetic data and traditional morphological interpretations; (ii) the biogeographic relationships, especially the potential origin of the different subfamilies, tribes, and genera, the number of transcontinental exchanges, as well as the phylogeographic structure at a (peri)-specific level, in order to establish the history of the genetic diversification of this family. The combined analyses of mitochondrial and nuclear DNA highlight for the first time a clear relationship between taxa at a high taxonomical level, permitting to distinguish the relationships between subfamilies, tribes, and genera. Although Myosorex formed a distinct monophyletic group, its definition as a distinct sub-family cannot be advocated. Thus, we propose to attribute a tribe level for this Glade (included within the Crocidurinae). Additionally, this combination of genes pleads in favour of the inclusion of the genus Anourosorex within the Soricinae and not in a basal position within the Soricidae. Within the Crocidurinae, Suncus appeared to be paraphyletic, and Diplomesodon should be considered from a genetic point of view as invalid, and is presently considered as Crocidura. At a lower taxonomic level, we showed the monophyly of two widely distributed species complexes, the C. suaveolens group and the C. olivieri group. Nevertheless within those, we showed major differences compared to morphological classification. For examples, C. sibirica revealed to not be a valid species, the molecular phylogenetic analyses failed to evidence genetical variations between it and samples of the type locality of C. suaveolens. In a biogeographic point of view, the climatic fluctuations and the tectonic plate activities of the last 20 Myr have strongly influenced the actual diversity of the family. At a high taxonomic level, the successive land bridge connections between the Old and the New World, which occurred during the Middle Miocene, have led to several independent colonisations of America by Soricinae, and a subsequent diversification of endemic Nearctic's tribe (Notiosoricini), genera (e.g. Cryptotis, Blaring) and sub-genus (Otisorex) within the Soricinae. Within the Old World, the barriers between Africa and Eurasia were more permeable, leading to several bidirectional exchanges within the Crocidurinae. The diversification of major clades occurred through the Miocene, some clades being endemic to Africa or Eurasia, whereas others diversified through the Old World. At a species level or a peri-specific level, the Pliocene climatic fluctuation and the Pleistocene glaciations have strongly divided the populations throughout the Palaearctic, leading to well defined genetic entities. In Europe, populations of the C. suaveolens group were split in a classical south-western and south-eastern lineage. In contrast, the Near East and the Middle East reveal many differentiated clades. In conclusion, our studies revealed that, from the Miocene to present, the diversification and speciation events within the Soricidae were caused by natural colonisation of new habitats (dispersion) and isolation of populations by various barriers (vicariance).
Resumo:
BACKGROUND: The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle. The cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis, is controlled by a network of signaling proteins called the Septation Initiation Network (SIN); SIN proteins associate with the SPBs during nuclear division (mitosis). Some SIN proteins associate with both SPBs early in mitosis, and then display strongly asymmetric signal intensity at the SPBs in late mitosis, just before cytokinesis. This asymmetry is thought to be important for correct regulation of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of organelles or large protein complexes such as the spindle pole body (SPB), which have been labeled with a fluorescent protein tag in living cells, a number of the image analysis problems must be solved; the cell outline must be detected automatically, and the position and signal intensity associated with the structures of interest within the cell must be determined. RESULTS: We present a new 2D and 3D image analysis system that permits versatile and robust analysis of motile, fluorescently labeled structures in rod-shaped cells. We have designed an image analysis system that we have implemented as a user-friendly software package allowing the fast and robust image-analysis of large numbers of rod-shaped cells. We have developed new robust algorithms, which we combined with existing methodologies to facilitate fast and accurate analysis. Our software permits the detection and segmentation of rod-shaped cells in either static or dynamic (i.e. time lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two different image channels. For 2D or 3D static images, the locations of the structures are identified, and then intensity values are extracted together with several quantitative parameters, such as length, width, cell orientation, background fluorescence and the distance between the structures of interest. Furthermore, two kinds of kymographs of the tracked structures can be established, one representing the migration with respect to their relative position, the other representing their individual trajectories inside the cell. This software package, called "RodCellJ", allowed us to analyze a large number of S. pombe cells to understand the rules that govern SIN protein asymmetry. CONCLUSIONS: "RodCell" is freely available to the community as a package of several ImageJ plugins to simultaneously analyze the behavior of a large number of rod-shaped cells in an extensive manner. The integration of different image-processing techniques in a single package, as well as the development of novel algorithms does not only allow to speed up the analysis with respect to the usage of existing tools, but also accounts for higher accuracy. Its utility was demonstrated on both 2D and 3D static and dynamic images to study the septation initiation network of the yeast Schizosaccharomyces pombe. More generally, it can be used in any kind of biological context where fluorescent-protein labeled structures need to be analyzed in rod-shaped cells. AVAILABILITY: RodCellJ is freely available under http://bigwww.epfl.ch/algorithms.html, (after acceptance of the publication).
Resumo:
* The 'in planta' visualization of F-actin in all cells and in all developmental stages of a plant is a challenging problem. By using the soybean heat inducible Gmhsp17.3B promoter instead of a constitutive promoter, we have been able to label all cells in various developmental stages of the moss Physcomitrella patens, through a precise temperature tuning of the expression of green fluorescent protein (GFP)-talin. * A short moderate heat treatment was sufficient to induce proper labeling of the actin cytoskeleton and to allow the visualization of time-dependent organization of F-actin structures without impairment of cell viability. * In growing moss cells, dense converging arrays of F-actin structures were present at the growing tips of protonema cell, and at the localization of branching. Protonema and leaf cells contained a network of thick actin cables; during de-differentiation of leaf cells into new protonema filaments, the thick bundled actin network disappeared, and a new highly polarized F-actin network formed. * The controlled expression of GFP-talin through an inducible promoter improves significantly the 'in planta' imaging of actin.
Resumo:
HAMAP (High-quality Automated and Manual Annotation of Proteins-available at http://hamap.expasy.org/) is a system for the automatic classification and annotation of protein sequences. HAMAP provides annotation of the same quality and detail as UniProtKB/Swiss-Prot, using manually curated profiles for protein sequence family classification and expert curated rules for functional annotation of family members. HAMAP data and tools are made available through our website and as part of the UniRule pipeline of UniProt, providing annotation for millions of unreviewed sequences of UniProtKB/TrEMBL. Here we report on the growth of HAMAP and updates to the HAMAP system since our last report in the NAR Database Issue of 2013. We continue to augment HAMAP with new family profiles and annotation rules as new protein families are characterized and annotated in UniProtKB/Swiss-Prot; the latest version of HAMAP (as of 3 September 2014) contains 1983 family classification profiles and 1998 annotation rules (up from 1780 and 1720). We demonstrate how the complex logic of HAMAP rules allows for precise annotation of individual functional variants within large homologous protein families. We also describe improvements to our web-based tool HAMAP-Scan which simplify the classification and annotation of sequences, and the incorporation of an improved sequence-profile search algorithm.
Resumo:
Introduction: Measures of the degree of lumbar spinal stenosis (LSS) such as antero-posterior diameter of the canal, and dural sac cross sectional area vary, and do not correlate with symptoms or results of surgery. We created a grading system, comprised of seven categories, based on the morphology of the dural sac and its contents as seen on T2 axial images. The categories take into account the ratio of rootlet/ CSF content. Grade A indicates no significant compression, grade D is equivalent to a total myelograhic block. We compared this classification with commonly used criteria of severity of stenosis. Methods: Fifty T2 axial MRI images taken at disc level from 27 symptomatic LSS patients undergoing decompressive surgery were classified twice by two radiologists and three spinal surgeons working at different institutions and countries. Dural sac cross-sectional surface area and AP diameter of the canal were measured both at disc and pedicle level from DICOM images using OsiriX software. Intraand inter-observer reliability were assessed using Cohen's, Fleiss' kappa statistics, and t test. Results: For the morphological grading the average intra-and inter observer kappas were 0.76 and 0.69+, respectively, for physicians working in the study originating country. Combining all observers the kappa values were 0.57 ± 0.19. and 0.44 ± 0.19, respectively. AP diameter and dural sac cross-sectional area measurements showed no statistically significant differences between observers. No correlation between morphological grading and AP diameter or dural sac crosssectional areawas observed in 13 (26%) and 8 cases (16%), respectively. Discussion: The proposed morphological grading relies on the identification of the dural sac and CSF better seen on full MRI series. This was not available to the external observers, which might explain the lower overall kappa values. Since no specific measurement tools are needed the grading suits everyday clinical practice and favours communication of degree of stenosis between practising physicians. The absence of a strict correlation with the dural sac surface suggests that measuring the surface alone might be insufficient in defining LSS as it is essentially a mismatch between the spinal canal and its contents. This grading is now adopted in our unit and further studies concentrating on relation between morphology, clinical symptoms and surgical results are underway.
Resumo:
Previous microarray studies on breast cancer identified multiple tumour classes, of which the most prominent, named luminal and basal, differ in expression of the oestrogen receptor alpha gene (ER). We report here the identification of a group of breast tumours with increased androgen signalling and a 'molecular apocrine' gene expression profile. Tumour samples from 49 patients with large operable or locally advanced breast cancers were tested on Affymetrix U133A gene expression microarrays. Principal components analysis and hierarchical clustering split the tumours into three groups: basal, luminal and a group we call molecular apocrine. All of the molecular apocrine tumours have strong apocrine features on histological examination (P=0.0002). The molecular apocrine group is androgen receptor (AR) positive and contains all of the ER-negative tumours outside the basal group. Kolmogorov-Smirnov testing indicates that oestrogen signalling is most active in the luminal group, and androgen signalling is most active in the molecular apocrine group. ERBB2 amplification is commoner in the molecular apocrine than the other groups. Genes that best split the three groups were identified by Wilcoxon test. Correlation of the average expression profile of these genes in our data with the expression profile of individual tumours in four published breast cancer studies suggest that molecular apocrine tumours represent 8-14% of tumours in these studies. Our data show that it is possible with microarray data to divide mammary tumour cells into three groups based on steroid receptor activity: luminal (ER+ AR+), basal (ER- AR-) and molecular apocrine (ER- AR+).
Resumo:
Introduction: Responses to external stimuli are typically investigated by averaging peri-stimulus electroencephalography (EEG) epochs in order to derive event-related potentials (ERPs) across the electrode montage, under the assumption that signals that are related to the external stimulus are fixed in time across trials. We demonstrate the applicability of a single-trial model based on patterns of scalp topographies (De Lucia et al, 2007) that can be used for ERP analysis at the single-subject level. The model is able to classify new trials (or groups of trials) with minimal a priori hypotheses, using information derived from a training dataset. The features used for the classification (the topography of responses and their latency) can be neurophysiologically interpreted, because a difference in scalp topography indicates a different configuration of brain generators. An above chance classification accuracy on test datasets implicitly demonstrates the suitability of this model for EEG data. Methods: The data analyzed in this study were acquired from two separate visual evoked potential (VEP) experiments. The first entailed passive presentation of checkerboard stimuli to each of the four visual quadrants (hereafter, "Checkerboard Experiment") (Plomp et al, submitted). The second entailed active discrimination of novel versus repeated line drawings of common objects (hereafter, "Priming Experiment") (Murray et al, 2004). Four subjects per experiment were analyzed, using approx. 200 trials per experimental condition. These trials were randomly separated in training (90%) and testing (10%) datasets in 10 independent shuffles. In order to perform the ERP analysis we estimated the statistical distribution of voltage topographies by a Mixture of Gaussians (MofGs), which reduces our original dataset to a small number of representative voltage topographies. We then evaluated statistically the degree of presence of these template maps across trials and whether and when this was different across experimental conditions. Based on these differences, single-trials or sets of a few single-trials were classified as belonging to one or the other experimental condition. Classification performance was assessed using the Receiver Operating Characteristic (ROC) curve. Results: For the Checkerboard Experiment contrasts entailed left vs. right visual field presentations for upper and lower quadrants, separately. The average posterior probabilities, indicating the presence of the computed template maps in time and across trials revealed significant differences starting at ~60-70 ms post-stimulus. The average ROC curve area across all four subjects was 0.80 and 0.85 for upper and lower quadrants, respectively and was in all cases significantly higher than chance (unpaired t-test, p<0.0001). In the Priming Experiment, we contrasted initial versus repeated presentations of visual object stimuli. Their posterior probabilities revealed significant differences, which started at 250ms post-stimulus onset. The classification accuracy rates with single-trial test data were at chance level. We therefore considered sub-averages based on five single trials. We found that for three out of four subjects' classification rates were significantly above chance level (unpaired t-test, p<0.0001). Conclusions: The main advantage of the present approach is that it is based on topographic features that are readily interpretable along neurophysiologic lines. As these maps were previously normalized by the overall strength of the field potential on the scalp, a change in their presence across trials and between conditions forcibly reflects a change in the underlying generator configurations. The temporal periods of statistical difference between conditions were estimated for each training dataset for ten shuffles of the data. Across the ten shuffles and in both experiments, we observed a high level of consistency in the temporal periods over which the two conditions differed. With this method we are able to analyze ERPs at the single-subject level providing a novel tool to compare normal electrophysiological responses versus single cases that cannot be considered part of any cohort of subjects. This aspect promises to have a strong impact on both basic and clinical research.