208 resultados para fusion and centric inversion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The siderophore pyochelin of Pseudomonas aeruginosa is derived from one molecule of salicylate and two molecules of cysteine. Two cotranscribed genes, pchEF, encoding peptide synthetases have been identified and characterized. pchE was required for the conversion of salicylate to dihydroaeruginoate (Dha), the condensation product of salicylate and one cysteine residue and pchF was essential for the synthesis of pyochelin from Dha. The deduced PchE (156 kDa) and PchF (197 kDa) proteins had adenylation, thiolation and condensation/cyclization motifs arranged as modules which are typical of those peptide synthetases forming thiazoline rings. The pchEF genes were coregulated with the pchDCBA operon, which provides enzymes for the synthesis (PchBA) and activation (PchD) of salicylate as well as a putative thioesterase (PchC). Expression of a translational pchE'-'lacZ fusion was strictly dependent on the PchR regulator and was induced by extracellular pyochelin, the end product of the pathway. Iron replete conditions led to Fur (ferric uptake regulator)-dependent repression of the pchE'-'lacZ fusion. A translational pchD'-'lacZ fusion was also positively regulated by PchR and pyochelin and repressed by Fur and iron. Thus, autoinduction by pyochelin (or ferric pyochelin) and repression by iron ensure a sensitive control of the pyochelin pathway in P. aeruginosa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Visualization of coronary blood flow by means of a slice-selective inversion pre-pulse in concert with bright-blood coronary MRA. MATERIALS AND METHODS: Coronary magnetic resonance angiography (MRA) of the right coronary artery (RCA) was performed in eight healthy adult subjects on a 1.5 Tesla MR system (Gyroscan ACS-NT, Philips Medical Systems, Best, NL) using a free-breathing navigator-gated and cardiac-triggered 3D steady-state free-precession (SSFP) sequence with radial k-space sampling. Imaging was performed with and without a slice-selective inversion pre-pulse, which was positioned along the main axis of the coronary artery but perpendicular to the imaging volume. Objective image quality parameters such as SNR, CNR, maximal visible vessel length, and vessel border definition were analyzed. RESULTS: In contrast to conventional bright-blood 3D coronary MRA, the selective inversion pre-pulse provided a direct measure of coronary blood flow. In addition, CNR between the RCA and right ventricular blood pool was increased and the vessels had a tendency towards better delineation. Blood SNR and CNR between right coronary blood and epicardial fat were comparable in both sequences. CONCLUSION: The combination of a free-breathing navigator-gated and cardiac-triggered 3D SSFP sequence with a slice-selective inversion pre-pulse allows for direct and directional visualization of coronary blood flow with the additional benefit of improved contrast between coronary and right ventricular blood pool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lymphocoele is a rare and little known complication with only a handful of reports available. We report two cases of lymphocoele after anterior lumbar surgery that have occurred in two different centres and discuss diagnosis and management options. The first case is that of a 53-year-old male patient undergoing two level anterior lumbar interbody fusion (ALIF) for disabling back pain due to disc degeneration in the context of an old spondylodiscitis. He developed a large fluid mass postoperatively. Fluid levels of creatinin were low and intravenous urography ruled out a urinoma suggesting the diagnosis of a lymphocoele. Following two unsuccessful drainage attempts he underwent a laparoscopic marsupialization. The second case was that of a 32-year-old female patient developing a large fluid mass following a L5 corpectomy for a burst fracture. She was treated successfully with insertion of a vacuum drain during 7 days. Lymphocoele is a rare complication but should be suspected if fluid collects postoperatively following anterior lumbar spine procedures. Chemical analysis of the fluid can help in diagnosis. Modern treatment consists of laparoscopic marsupialization. Lymph vessel anatomy should be borne in mind while exposing the anterior lumbar spine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudomonas aeruginosa has an anabolic (ArgF) and a catabolic (ArcB) ornithine carbamoyltransferase (OTCase). Despite extensive sequence similarities, these enzymes function unidirectionally in vivo. In the dodecameric catabolic OTCase, homotropic cooperativity for carbamoylphosphate strongly depresses the anabolic reaction; the residue Glu1O5 and the C-terminus are known to be essential for this cooperativity. When Glu1O5 and nine C-terminal amino acids of the catabolic OTCase were introduced, by in vitro genetic manipulation, into the closely related, trimeric, anabolic (ArgF) OTCase of Escherichia coli, the enzyme displayed Michaelis-Menten kinetics and no cooperativity was observed. This indicates that additional amino acid residues are required to produce homotropic cooperativity and a dodecameric assembly. To localize these residues, we constructed several hybrid enzymes by fusing, in vivo or in vitro, the E. coli argF gene to the P. aeruginosa arcB gene. A hybrid enzyme consisting of 101 N-terminal ArgF amino acids fused to 233 C-terminal ArcB residues and the reciprocal ArcB-ArgF hybrid were both trimers with little or no cooperativity. Replacing the seven N-terminal residues of the ArcB enzyme by the corresponding six residues of E. coli ArgF enzyme produced a dodecameric enzyme which showed a reduced affinity for carbamoylphosphate and an increase in homotropic cooperativity. Thus, the N-terminal amino acids of catabolic OTCase are important for interaction with carbamoylphosphate, but do not alone determine dodecameric assembly. Hybrid enzymes consisting of either 26 or 42 N-terminal ArgF amino acids and the corresponding C-terminal ArcB residues were both trimeric, yet they retained some homotropic cooperativity. Within the N-terminal ArcB region, a replacement of motif 28-33 by the corresponding ArgF segment destabilized the dodecameric structure and the enzyme existed in trimeric and dodecameric states, indicating that this region is important for dodecameric assembly. These findings were interpreted in the light of the three-dimensional structure of catabolic OTCase, which allows predictions about trimer-trimer interactions. Dodecameric assembly appears to require at least three regions: the N- and C-termini (which are close to each other in a monomer), residues 28-33 and residues 147-154. Dodecameric structure correlates with high carbamoylphosphate cooperativity and thermal stability, but some trimeric hybrid enzymes retain cooperativity, and the dodecameric Glu1O5-->Ala mutant gives hyperbolic carbamoylphosphate saturation, indicating that dodecameric structure is neither necessary nor sufficient to ensure cooperativity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the mediators of pleiotropic drug resistance in Saccharomyces cerevisiae is the ABC-transporter gene PDR5. This gene is regulated by at least two transcription factors with Zn(2)-Cys(6) finger DNA-binding motifs, Pdr1p and Pdr3p. In this work, we searched for functional homologues of these transcription factors in Candida albicans. A C. albicans gene library was screened in a S. cerevisiae mutant lacking PDR1 and PDR3 and clones resistant to azole antifungals were isolated. From these clones, three genes responsible for azole resistance were identified. These genes (CTA4, ASG1 and CTF1) encode proteins with Zn(2)-Cys(6)-type zinc finger motifs in their N-terminal domains. The C. albicans genes expressed in S. cerevisiae could activate the transcription of a PDR5-lacZ reporter system and this reporter activity was PDRE-dependent. They could also confer resistance to azoles in a S. cerevisiae strain lacking PDR1, PDR3 and PDR5, suggesting that CTA4-, ASG1- and CTF1-dependent azole resistance can be caused by genes other than PDR5 in S. cerevisiae. Deletion of CTA4, ASG1 and CTF1 in C. albicans had no effect on fluconazole susceptibility and did not alter the expression of the ABC-transporter genes CDR1 and CDR2 or the major facilitator gene MDR1, which encode multidrug transporters known as mediators of azole resistance in C. albicans. However, additional phenotypic screening tests on the C. albicans mutants revealed that the presence of ASG1 was necessary to sustain growth on non-fermentative carbon sources (sodium acetate, acetic acid, ethanol). In conclusion, C. albicans possesses functional homologues of the S. cerevisiae Pdr1p and Pdr3p transcription factors; however, their properties in C. albicans have been rewired to other functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Delta(3),Delta(2)-enoyl CoA isomerase (ECI) is an enzyme that participates in the degradation of unsaturated fatty acids through the beta-oxidation cycle. Three genes encoding Delta(3),Delta(2)-enoyl CoA isomerases and named AtECI1, AtECI2 and AtECI3 have been identified in Arabidopsis thaliana. When expressed heterologously in Saccharomyces cerevisiae, all three ECI proteins were targeted to the peroxisomes and enabled the yeast Deltaeci1 mutant to degrade 10Z-heptadecenoic acid, demonstrating Delta(3),Delta(2)-enoyl CoA isomerase activity in vivo. Fusion proteins between yellow fluorescent protein and AtECI1 or AtECI2 were targeted to the peroxisomes in onion epidermal cells and Arabidopsis root cells, but a similar fusion protein with AtECI3 remained in the cytosol for both tissues. AtECI3 targeting to peroxisomes in S. cerevisiae was dependent on yeast PEX5, while expression of Arabidopsis PEX5 in yeast failed to target AtECI3 to peroxisomes. AtECI2 and AtECI3 are tandem duplicated genes and show a high level of amino acid conservation, except at the C-terminus; AtECI2 ends with the well conserved peroxisome targeting signal 1 (PTS1) terminal tripeptide PKL, while AtECI3 possesses a divergent HNL terminal tripeptide. Evolutionary analysis of ECI genes in plants revealed several independent duplication events, with duplications occurring in rice and Medicago truncatula, generating homologues with divergent C-termini and no recognizable PTS1. All plant ECI genes analyzed, including AtECI3, are under negative purifying selection, implying functionality of the cytosolic AtECI3. Analysis of the mammalian and fungal genomes failed to identify cytosolic variants of the Delta(3),Delta(2)-enoyl CoA isomerase, indicating that evolution of cytosolic Delta(3),Delta(2)-enoyl CoA isomerases is restricted to the plant kingdom

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More than a decade ago, 'plasticity' suddenly became a 'fashionable' topic with overemphasized implications for regenerative medicine. The concept of 'plasticity' is supported by old transplantation work, at least for embryonic cells, and metaplasia is a classic example of plasticity observed in patients. Nevertheless, the publication of a series of papers showing rare conversion of a given cell type into another unrelated cell raised the possibility of using any unaffected tissue to create at will new cells to replace a different failing tissue or organ. This resulted in disingenuous interpretations and a reason not to fund anymore research on embryonic stem cells (ESc). Moreover, many papers on plasticity were difficult to reproduce and thus questioned; raising issues about plasticity as a technical artefact or a consequence of rare spontaneous cells fusion. More recently, reprogramming adult differentiated cells to a pluripotent state (iPS) became possible, and later, one type of differentiated cell could be directly reprogrammed into another (e.g. fibroblasts into neurons) without reverting to pluripotency. Although the latter results from different and more robust experimental protocols, these phenomena also exemplify 'plasticity'. In this review, we want to place 'plasticity' in a historical perspective still taking into account ethical and political implications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We employed two independent approaches to inactivate the angiogenic protein VEGF in newborn mice: inducible, Cre-loxP- mediated gene targeting, or administration of mFlt(1-3)-IgG, a soluble VEGF receptor chimeric protein. Partial inhibition of VEGF achieved by inducible gene targeting resulted in increased mortality, stunted body growth and impaired organ development, most notably of the liver. Administration of mFlt(1-3)-IgG, which achieves a higher degree of VEGF inhibition, resulted in nearly complete growth arrest and lethality. Ultrastructural analysis documented alterations in endothelial and other cell types. Histological and biochemical changes consistent with liver and renal failure were observed. Endothelial cells isolated from the liver of mFlt(1-3)-IgG-treated neonates demonstrated an increased apoptotic index, indicating that VEGF is required not only for proliferation but also for survival of endothelial cells. However, such treatment resulted in less significant alterations as the animal matured, and the dependence on VEGF was eventually lost some time after the fourth postnatal week. Administration of mFlt(1-3)-IgG to juvenile mice failed to induce apoptosis in liver endothelial cells. Thus, VEGF is essential for growth and survival in early postnatal life. However, in the fully developed animal, VEGF is likely to be involved primarily in active angiogenesis processes such as corpus luteum development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glut-2 is a low-affinity transporter present in the plasma membrane of pancreatic beta-cells, hepatocytes and intestine and kidney absorptive epithelial cells of mice. In beta-cells, Glut-2 has been proposed to be active in the control of glucose-stimulated insulin secretion (GSIS; ref. 2), and its expression is strongly reduced in glucose-unresponsive islets from different animal models of diabetes. However, recent investigations have yielded conflicting data on the possible role of Glut-2 in GSIS. Whereas some reports have supported a specific role for Glut-2 (refs 5,6), others have suggested that GSIS could proceed normally even in the presence of low or almost undetectable levels of this transporter. Here we show that homozygous, but not heterozygous, mice deficient in Glut-2 are hyperglycaemic and relatively hypo-insulinaemic and have elevated plasma levels of glucagon, free fatty acids and beta-hydroxybutyrate. In vivo, their glucose tolerance is abnormal. In vitro, beta-cells display loss of control of insulin gene expression by glucose and impaired GSIS with a loss of first phase but preserved second phase of secretion, while the secretory response to non-glucidic nutrients or to D-glyceraldehyde is normal. This is accompanied by alterations in the postnatal development of pancreatic islets, evidenced by an inversion of the alpha- to beta-cell ratio. Glut-2 is thus required to maintain normal glucose homeostasis and normal function and development of the endocrine pancreas. Its absence leads to symptoms characteristic of non-insulin-dependent diabetes mellitus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retroelements are important evolutionary forces but can be deleterious if left uncontrolled. Members of the human APOBEC3 family of cytidine deaminases can inhibit a wide range of endogenous, as well as exogenous, retroelements. These enzymes are structurally organized in one or two domains comprising a zinc-coordinating motif. APOBEC3G contains two such domains, only the C terminal of which is endowed with editing activity, while its N-terminal counterpart binds RNA, promotes homo-oligomerization, and is necessary for packaging into human immunodeficiency virus type 1 (HIV-1) virions. Here, we performed a large-scale mutagenesis-based analysis of the APOBEC3G N terminus, testing mutants for (i) inhibition of vif-defective HIV-1 infection and Alu retrotransposition, (ii) RNA binding, and (iii) oligomerization. Furthermore, in the absence of structural information on this domain, we used homology modeling to examine the positions of functionally important residues and of residues found to be under positive selection by phylogenetic analyses of primate APOBEC3G genes. Our results reveal the importance of a predicted RNA binding dimerization interface both for packaging into HIV-1 virions and inhibition of both HIV-1 infection and Alu transposition. We further found that the HIV-1-blocking activity of APOBEC3G N-terminal mutants defective for packaging can be almost entirely rescued if their virion incorporation is forced by fusion with Vpr, indicating that the corresponding region of APOBEC3G plays little role in other aspects of its action against this pathogen. Interestingly, residues forming the APOBEC3G dimer interface are highly conserved, contrasting with the rapid evolution of two neighboring surface-exposed amino acid patches, one targeted by the Vif protein of primate lentiviruses and the other of yet-undefined function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conjugative transfer of the integrative and conjugative element ICEclc in the bacterium Pseudomonas knackmussii is the consequence of a bistable decision taken in some 3% of cells in a population during stationary phase. Here we study the possible control exerted by the stationary phase sigma factor RpoS on the bistability decision. The gene for RpoS in P. knackmussii B13 was characterized, and a loss-of-function mutant was produced and complemented. We found that, in absence of RpoS, ICEclc transfer rates and activation of two key ICEclc promoters (P(int) and P(inR)) decrease significantly in cells during stationary phase. Microarray and gene reporter analysis indicated that the most direct effect of RpoS is on P(inR), whereas one of the gene products from the P(inR)-controlled operon (InrR) transmits activation to P(int) and other ICEclc core genes. Addition of a second rpoS copy under control of its native promoter resulted in an increase of the proportion of cells expressing the P(int) and P(inR) promoters to 18%. Strains in which rpoS was replaced by an rpoS-mcherry fusion showed high mCherry fluorescence of individual cells that had activated P(int) and P(inR), whereas a double-copy rpoS-mcherry-containing strain displayed twice as much mCherry fluorescence. This suggested that high RpoS levels are a prerequisite for an individual cell to activate P(inR) and thus ICEclc transfer. Double promoter-reporter fusions confirmed that expression of P(inR) is dominated by extrinsic noise, such as being the result of cellular variability in RpoS. In contrast, expression from P(int) is dominated by intrinsic noise, indicating it is specific to the ICEclc transmission cascade. Our results demonstrate how stochastic noise levels of global transcription factors can be transduced to a precise signaling cascade in a subpopulation of cells leading to ICE activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the interplay between cooperation and conflict in social groups is a major goal of biology. One important factor is genetic relatedness, and animal societies are usually composed of related but genetically different individuals, setting the stage for conflicts over reproductive allocation. Recently, however, it has been found that several ant species reproduce predominantly asexually. Although this can potentially give rise to clonal societies, in the few well-studied cases, colonies are often chimeric assemblies of different genotypes, due to worker drifting or colony fusion. In the ant Cerapachys biroi, queens are absent and all individuals reproduce via thelytokous parthenogenesis, making this species an ideal study system of asexual reproduction and its consequences for social dynamics. Here, we show that colonies in our study population on Okinawa, Japan, recognize and effectively discriminate against foreign workers, especially those from unrelated asexual lineages. In accord with this finding, colonies never contained more than a single asexual lineage and average pairwise genetic relatedness within colonies was extremely high (r = 0.99). This implies that the scope for social conflict in C. biroi is limited, with unusually high potential for cooperation and altruism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Intraoperative EMG based neurophysiological monitoring is increasingly used to assist pedicle screw insertion. We carried out a study comparing the final screw position in the pedicle measured on CT images in relation to its corresponding intraoperative muscle compound action potential (CMAP) values. Material and methods: A total of 189 screws were inserted in thoracolumbar spines of 31 patients during instrumented fusion under EMG control. An observer, blinded to the CMAP value, assessed the horizontal and vertical 'screw edge to pedicle edge' distance perpendicular to the longitudinal axis of the screw on reformatted CT reconstructions using OsiriX software. These distances were analysed with their corresponding CMAP values. Data from 62 thoracic and 127 lumbar screws were processed separately. Interobserver reliability of distance measurements was assessed. Results: No patient suffered neurological injury secondary to screw insertion. Distance measurements were reliable (paired t-test, P = 0.13/0.98 horizontal/vertical). Two screws had their position altered due to low CMAP values suggesting close proximity of nerve tissue. Seventy five percent of screws had CMAP results above 10mA and had an average distance of 0.35cm (SD 0.23) horizontally and 0.46cm (SD 0.26) vertically from the pedicle edge. Additional 12% had a distance from the edge of the pedicle less than 0mm indicating cortical breach but had CMAP values above 10mA. A poor correlation between CMAP values and screw position was found. Discussion: In this study CMAP values above 10mA indicated correct screw position in the majority of cases. The zone of 10-20mA CMAP carries highest risk of a misplaced screw despite high CMAP value (17% of screws this CMAP range). In order to improve accuracy of EMG predictive value further research is warranted including improvement of probing techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurons fire by releasing neurotransmitters via fusion of synaptic vesicles with the plasma membrane. Fusion can be evoked by an incoming signal from a preceding neuron or can occur spontaneously. Synaptic vesicle fusion requires the formation of trans complexes between SNAREs as well as Ca(2+) ions. Wang et al. (2014. J. Cell Biol. http://dx.doi.org/jcb.201312109) now find that the Ca(2+)-binding protein Calmodulin promotes spontaneous release and SNARE complex formation via its interaction with the V0 sector of the V-ATPase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Canine distemper virus (CDV) produces a glycosylated type I fusion protein (F) with an internal hydrophobic signal sequence beginning around 115 residues downstream of the first AUG used for translation initiation. Cleavage of the signal sequence yields the F0 molecule, which is cleaved into the F1 and F2 subunits. Surprisingly, when all in-frame AUGs located in the first third of the F gene were mutated a protein of the same molecular size as the F0 molecule was still expressed from both the Onderstepoort (OP) and A75/17-CDV F genes. We designated this protein, which is initiated from a non-AUG codon protein Fx. Site-directed mutagenesis allowed to identify codon 85, a GCC codon coding for alanine, as the most likely position from which translation initiation of Fx occurs in OP-CDV. Deletion analysis demonstrated that at least 60 nucleotides upstream of the GCC codon are required for efficient Fx translation. This sequence is GC-rich, suggesting extensive folding. Secondary structure may therefore be important for translation initiation at codon 85.