95 resultados para dynamic elastic modulus
Resumo:
Chemical shifts of protons can report on metabolic transformations such as the conversion of choline to phosphocholine. To follow such processes in vivo, magnetization can be enhanced by dynamic nuclear polarization (DNP). We have hyperpolarized in this manner nitrogen-15 spins in (15)N-labeled choline up to 3.3% by irradiating the 94 GHz electron spin resonance of admixed TEMPO nitroxide radicals in a magnetic field of 3.35 T during ca. 3 h at 1.2 K. The sample was subsequently transferred to a high-resolution magnet, and the enhanced polarization was converted from (15)N to methyl- and methylene protons, using the small (2,3)J((1)H,(15)N) couplings in choline. The room-temperature lifetime of nitrogen polarization in choline, T(1)((15)N) approximately 200 s, could be considerably increased by partial deuteration of the molecule. This procedure enables studies of choline metabolites in vitro and in vivo using DNP-enhanced proton NMR.
Resumo:
INTRODUCTION: There is a trend towards surgical treatment of acute ruptured Achilles tendon. While classical open surgical procedures have been shown to restore good functional capacity, they are potentially associated with significant complications like wound infection and paresthesia. Modern mini-invasive surgical techniques significantly reduce these complications and are also associated with good functional results so that they can be considered as the surgical treatment of choice. Nevertheless, there is still a need for conservative alternative and recent studies report good results with conservative treatment in rigid casts or braces. PATIENTS/METHOD: We report the use of a dynamic ankle brace in the conservative treatment of Achilles tendon rupture in a prospective non-randomised study of 57 consecutive patients. Patients were evaluated at an average follow-up time of 5 years using the modified Leppilahti Ankle Score, and the first 30 patients additionally underwent a clinical examination and muscular testing with a Cybex isokinetic dynamometer at 6 and 12 months. RESULTS: We found good and excellent results in most cases. We observed five complete re-ruptures, almost exclusively in case of poor patient's compliance, two partial re-ruptures and one deep venous thrombosis complicated by pulmonary embolism. CONCLUSION: Although prospective comparison with other modern treatment options is still required, the functional outcome after early ankle mobilisation in a dynamic cast is good enough to ethically propose this method as an alternative to surgical treatment.
Resumo:
In dynamic models of energy allocation, assimilated energy is allocated to reproduction, somatic growth, maintenance or storage, and the allocation pattern can change with age. The expected evolutionary outcome is an optimal allocation pattern, but this depends on the environment experienced during the evolutionary process and on the fitness costs and benefits incurred by allocating resources in different ways. Here we review existing treatments which encompass some of the possibilities as regards constant or variable environments and their predictability or unpredictability, and the ways in which production rates and mortality rates depend on body size and composition and age and on the pattern of energy allocation. The optimal policy is to allocate resources where selection pressures are highest, and simultaneous allocation to several body subsystems and reproduction can be optimal if these pressures are equal. This may explain balanced growth commonly observed during ontogeny. Growth ceases at maturity in many models; factors favouring growth after maturity include non-linear trade-offs, variable season length, and production and mortality rates both increasing (or decreasing) functions of body size. We cannot yet say whether these are sufficient to account for the many known cases of growth after maturity and not all reasonable models have yet been explored. Factors favouring storage are also reviewed.
Resumo:
quantiNemo is an individual-based, genetically explicit stochastic simulation program. It was developed to investigate the effects of selection, mutation, recombination and drift on quantitative traits with varying architectures in structured populations connected by migration and located in a heterogeneous habitat. quantiNemo is highly flexible at various levels: population, selection, trait(s) architecture, genetic map for QTL and/or markers, environment, demography, mating system, etc. quantiNemo is coded in C++ using an object-oriented approach and runs on any computer platform. Availability: Executables for several platforms, user's manual, and source code are freely available under the GNU General Public License at http://www2.unil.ch/popgen/softwares/quantinemo.
Resumo:
There is increasing evidence to suggest that the presence of mesoscopic heterogeneities constitutes an important seismic attenuation mechanism in porous rocks. As a consequence, centimetre-scale perturbations of the rock physical properties should be taken into account for seismic modelling whenever detailed and accurate responses of specific target structures are desired, which is, however, computationally prohibitive. A convenient way to circumvent this problem is to use an upscaling procedure to replace each of the heterogeneous porous media composing the geological model by corresponding equivalent visco-elastic solids and to solve the visco-elastic equations of motion for the inferred equivalent model. While the overall qualitative validity of this procedure is well established, there are as of yet no quantitative analyses regarding the equivalence of the seismograms resulting from the original poro-elastic and the corresponding upscaled visco-elastic models. To address this issue, we compare poro-elastic and visco-elastic solutions for a range of marine-type models of increasing complexity. We found that despite the identical dispersion and attenuation behaviour of the heterogeneous poro-elastic and the equivalent visco-elastic media, the seismograms may differ substantially due to diverging boundary conditions, where there exist additional options for the poro-elastic case. In particular, we observe that at the fluid/porous-solid interface, the poro- and visco-elastic seismograms agree for closed-pore boundary conditions, but differ significantly for open-pore boundary conditions. This is an important result which has potentially far-reaching implications for wave-equation-based algorithms in exploration geophysics involving fluid/porous-solid interfaces, such as, for example, wavefield decomposition.