276 resultados para double well
Resumo:
The general practice of altitude training is widely accepted as a means to enhance sport performance despite a lack of rigorous scientific studies. For example, the scientific gold-standard design of a double-blind, placebo-controlled, cross-over trial has never been conducted on altitude training. Given that few studies have utilised appropriate controls, there should be more scepticism concerning the effects of altitude training methodologies. In this brief review we aim to point out weaknesses in theories and methodologies of the various altitude training paradigms and to highlight the few well-designed studies to give athletes, coaches and sports medicine professionals the current scientific state of knowledge on common forms of altitude training. Another aim is to encourage investigators to design well-controlled studies that will enhance our understanding of the mechanisms and potential benefits of altitude training.
Resumo:
OBJECTIVES: Gouty arthritis patients for whom non-steroidal anti-inflammatory drugs and colchicine are inappropriate have limited treatment options. Canakinumab, an anti-interleukin-1β monoclonal antibody, may be an option for such patients. The authors assessed the efficacy/safety of one dose of canakinumab 150 mg (n=230) or triamcinolone acetonide (TA) 40 mg (n=226) at baseline and upon a new flare in frequently flaring patients contraindicated for, intolerant of, or unresponsive to non-steroidal anti-inflammatory drugs and/or colchicine. Core study co-primary endpoints were pain intensity 72 h postdose (0-100 mm visual analogue scale and time to first new flare. METHODS: Two 12-week randomised, multicentre, active-controlled, double-blind, parallel-group core studies with double-blind 12-week extensions (response in acute flare and in prevention of episodes of re-flare in gout (β-RELIEVED and β-RELIEVED-II)). RESULTS: 82.6% patients had comorbidities. Mean 72-h visual analogue scale pain score was lower with canakinumab (25.0 mm vs 35.7 mm; difference, -10.7 mm; 95% CI -15.4 to -6.0; p<0.0001), with significantly less physician-assessed tenderness and swelling (ORs=2.16 and 2.74; both p≤0.01) versus TA. Canakinumab significantly delayed time to first new flare, reduced the risk of new flares by 62% versus TA (HR: 0.38; 95% CI 0.26 to 0.57) in the core studies and by 56% (HR: 0.44; 95% CI 0.32 to 0.60; both p≤0.0001) over the entire 24-week period, and decreased median C-reactive protein levels (p≤0.0001 at 72 h and 7 days). Over the 24-week period, adverse events were reported in 66.2% (canakinumab) and 52.8% (TA) and serious adverse events were reported in 8.0% (canakinumab) and 3.5% (TA) of patients. Adverse events reported more frequently with canakinumab included infections, low neutrophil count and low platelet count. CONCLUSION: Canakinumab provided significant pain and inflammation relief and reduced the risk of new flares in these patients with acute gouty arthritis.
Resumo:
The polymeric Ig receptor (pIgR) ensures efficient secretion of polymeric IgA (pIgA) at mucosal surfaces. On basal to apical transport across epithelial cells, the pIgR extracellular domain is cleaved, releasing secretory component (SC) in association with pIgA. This finds its raison d'être in the recent observation that SC is directly involved in the protective function of secretory IgA. In addition, free SC exhibits scavenger properties with respect to enteric pathogens. However, although pIgR dedicates its life to mucosal protection, it also seems to permit pathogen entrance through the epithelial barrier. The multiple mechanisms that they are involved in make pIgR and SC instrumental to mucosal immunity.
Resumo:
Introduction: Two subcutaneous injections of adalimumab in severeacute sciatica have demonstrated a significant benefit on the numberof back surgeries in a short-term randomized controlled clinical trial[1]. This 3-year follow-up study aimed to determine whether theshort-term benefit was sustained over a longer period of time.Methods: Information on surgery was retrieved in 56/61 patients(93%). We used a Cox proportional hazard models to determinefactors predisposing to surgery.Results: Twenty-three (41%) patients had back surgery within 3 years,8/29 (28%) in the adalimumab group and 15/ 27 (56%) in the placebogroup, p = 0.038. Adalimumab injections reduced the need for backsurgery by 61% (Hazard Ratio (HR): 0.39 (95% CI: 0.17-0.92). In amultivariate model, treatment with a TNF-α antagonist remained thestrongest protective factor (HR 0.17, p = 0.002). Other significantpredictors of surgery were a good correlation between symptomsand MRI findings (HR = 11.6, p = 0.04), baseline intensity of leg pain(HR = 1.3, p = 0.06), intensity of back pain (HR = 1.4, p = 0.03)and duration of sickness leave (HR = 1.01 per day, p = 0.03).Conclusion: A short course of adalimumab in patients with severeacute sciatica significantly reduces the need for back surgery.
Resumo:
MDL 100,240, a dual inhibitor of angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP), was administered intravenously to two panels of four healthy males in a four-period, dose-increasing (0, 1.56, 6.25, and 25 mg, and 0, 3.13, 12.5, and 50 mg, respectively) double-blind, placebo-controlled study. Plasma ACE activity and blood-pressure response to exogenous angiotensin I and angiotensin II i.v. challenges and safety and tolerance were assessed over a 24-h period. MDL 100,240 induced a rapid, dose-related, and sustained inhibition of ACE (>70% over 24 h at doses > or =12.5 mg). The time integral of ACE inhibition was related to the dose but with near-maximal values already attained at doses > or =12.5 mg. Systolic and diastolic blood-pressure responses to exogenous angiotensin I challenges were inhibited in a dose-dependent fashion, whereas the effects of angiotensin II remained unaffected. Mean supine blood pressure decreased transiently (3 h) at doses > or =3.125 mg and < or =24 h with the 25- and 50-mg doses, but not significantly. MDL 100,240 was well tolerated. In healthy subjects, MDL 100,240 exerts a dose-dependent and long-lasting ACE-blocking activity, also expressed by the inhibition of the pressor responses to exogenous angiotensin I challenges. The baroreceptor reflex, assessed by the response to exogenous angiotensin II challenge, remains unaltered.
Resumo:
A continuous carbon isotope curve from Middle-Upper Jurassic pelagic carbonate rocks was acquired from two sections in the southern part of the Umbria-Marche Apennines in central Italy. At the Colle Bertone section (Terni) and the Terminilletto section (Rieti), the Upper Toarcian to Bajocian Calcari e Marne a Posidonia Formation and the Aalenian to Kimmeridgian Calcari e Marne a Posidonia and Calcari Diasprigni formations were sampled, respectively. Biostratigraphy in both sections is based on rich assemblages of calcareous nannofossils and radiolarians, as well as some ammonites found in the upper Toarcian-Bajocian interval. Both sections revealed a relative minimum of delta(13)C(PDB) close to + 2 parts per thousand in the Aalenian and a maximum around 3.5 parts per thousand in early Bajocian, associated with an increase in visible chert. In basinal sections in Umbria-Marche, this interval includes the very cherry base of the Calcari Diasprigni Formation (e.g. at Valdorbia) or the chert-rich uppermost portion of the Calcari a Posidonia (e.g at Bosso). In the Terminilletto section, the Bajocian-early Barthonian interval shows a gradual decrease in delta(13)C(PDB) values and a low around 2.3 parts per thousand. This part of the section is characterised by more than 40 m of almost chart-free limestones and correlates with a recurrence of limestone-rich facies in basinal sections at Valdorbia. A double peak with values of delta(13)C(PDB) around + 3 parts per thousand was observed in the Callovian and Oxfordian, constrained by well preserved radiolarian faunas. The maxima lie in the Callovian and the middle Oxfordian, and the minimum between the two peaks should be near the Callovian/Oxfordian boundary. In the Terminilletto section, visible chert increases together with delta(13)C(PDB) values from the middle Bathonian and reaches peak values in the Callovian-Oxfordian. In basinal sections in Umbria-Marche, a sharp increase in visible chert is observed at this level within the Calcari Diasprigni. A drop of delta(13)C values towards + 2 parts per thousand occurs in the Kimmeridgian and coincides with a decrease of visible chert in outcrop. The observed delta(13)C positive anomalies during the early Bajocian and the Callovian-Oxfordian may record changes in global climate towards warmer, more humid periods characterised by increased nutrient mobilisation and increased carbon burial. High biosiliceous (radiolarians, siliceous sponges) productivity and preservation appear to coincide with the delta(13)C positive anomalies, when the production of platform carbonates was subdued and ceased in many areas, with a drastic reduction of periplatform ooze input in many Tethyan basins. The carbon and silica cycles appear to be linked through global warming and increased continental weathering. Hydrothermal events related to extensive rifting and/or accelerated oceanic spreading may be the endogenic driving force that created a perturbation of the exogenic system (excess CO2 into the atmosphere and greenhouse conditions) reflected by the positive delta(13)C shifts and biosiliceous episodes.
Resumo:
BACKGROUND AND OBJECTIVE: Off-pump coronary artery bypass grafting has stimulated the development of micro-pumps designed to prevent the hemodynamic instability induced by heart luxation for the exposure of target vessels of the posterior wall. Impella (Aachen, Germany) developed micro-pumps with a miniaturized propeller system for both sides of the heart. The aim of this study was to analyze the impact of both pumps working together on blood cell integrity. MATERIALS AND METHODS: Both right and left-sided micro-pumps were implanted in 5 calves (body weight, 72_4 Kg) during 3 h. Blood samples for hematology and hemolysis parameters were drawn hourly. RESULTS: Both pumps performed well with a flow of 3.6 L +/- 0.3 L during the 3 h of the experiment with stable hemodynamic conditions. Mixed venous oxygen saturation was 63.4 +/- 15.2% at baseline and 63.8 +/- 16.3% at the end of the experiment (P = ns). Red cell count, LDH and free plasma hemoglobin were 6.7 +/- 2.1 x 10(12)/L, 1807 +/- 437 IU/L, and 32 +/- 9 mg/L at baseline vs. 6.1 +/- 2.1 x 10(12)/L, 1871 +/- 410 IU/L, and 52 +/- 9 mg/L at the end of the experiment (P = ns for all comparisons). Platelet count exhibited a non-significant drop (872 +/- 126 vs. 715 +/- 22 x 10(9)/L). CONCLUSIONS: This double pump system based on the Archimed screw principle is hematologically well tolerated under conditions of prolonged cardiac assist.
Resumo:
At mucosal surfaces, secretory IgA (SIgA) antibodies serve as the first line of defense against microorganisms through a mechanism called immune exclusion that prevents interaction of neutralized antigens with the epithelium. In addition, SIgA plays a role in the immune balance of the epithelial barrier through selective adhesion to M cells in intestinal Peyer's patches. This mediates the transepithelial retro-transport of the antibody and associated antigens from the intestinal lumen to underlying gut-associated organized lymphoid tissue. In Peyer's patches, SIgA-based immune complexes are internalized by underlying antigen-presenting cells, leaving the antigen with masked epitopes, a form that limits the risk of overwhelming the local immune protection system with danger signals. This translates into the onset of mucosal and systemic responses associated with production of anti-inflammatory cytokines and limited activation of antigen-presenting cells. In the gastrointestinal tract, SIgA exhibits thus properties of a neutralizing agent (immune exclusion) and of an immunopotentiator inducing effector immune responses in a noninflammatory context favorable to preserve local homeostasis.
Resumo:
Viral double-stranded RNA (dsRNA) is a ubiquitous intracellular "alert signal" used by cells to detect viral infection and to mount anti-viral responses. DsRNA triggers a rapid (complete within 2-4 h) apoptosis in the highly-susceptible HeLa cell line. Here, we demonstrate that the apical event in this apoptotic cascade is the activation of procaspase 8. Downstream of caspase 8, the apoptotic signaling cascade bifurcates into a mitochondria-independent caspase 8/caspase 3 arm and a mitochondria-dependent, caspase 8/Bid/Bax/Bak/cytochrome c arm. Both arms impinge upon, and activate, procaspase 9 via two different cleavage sites within the procaspase 9 molecule (D330 and D315, respectively). This is the first in vivo demonstration that the "effector" caspase 3 plays an "initiator" role in the regulation of caspase 9. The dsRNA-induced apoptosis is potentiated by the inhibition of protein synthesis, whose role is to accelerate the execution of all apoptosis steps downstream of, and including, the activation of caspase 8. Thus, efficient apoptosis in response to viral dsRNA results from the co-operation of the two major apical caspases (8 and 9) and the dsRNA-activated protein kinase R (PKR)/ribonuclease L (RNase L) system that is essential for the inhibition of protein synthesis in response to viral infection.
Resumo:
Résumé Les télomères sont les structures ADN-protéines des extrémités des chromosomes des eucaryotes. L'ADN télomérique est constitué de courtes séquences répétitives. L'intégrité des télomères est essentielle pour protéger les extrémités des chromosomes contre les systèmes de dégradations et pour les distinguer des cassures de l'ADN double brin. Parce que la machinerie de la réplication de l'ADN n'est pas capable de répliquer l'extrémité des chromosomes, les télomères raccourcissent au fur et à mesure des cycles de réplication. Dès que les télomères atteignent une longueur critique, leur structure protectrice est perdue. Cela induit un signal de dommage de l'ADN et l'arrêt du cycle cellulaire. Pour contrebalancer le raccourcissement des télomères, les cellules qui s'auto régénèrent, dont les cellules de la moelle osseuse, les lymphocytes activés et 80-90% des cellules cancéreuses, expriment la télomérase. C'est une ribonucléoprotéine qui a la capacité de synthétiser des séquences télomériques par transcription inverse d'une courte séquence contenue dans sa propre sous-unité ARN avec laquelle elle est associée. La télomérase humaine est une enzyme processive au niveau de l'addition des nucléotides et aussi des répétitions télomériques. La télomérase de levure et la télomérase humaine sont toutes deux dimériques et il a été montré que la télomérase humaine recombinante contient deux ARN qui coopèrent pour fonctionner ainsi que deux sous-unités catalytiques. Cependant, il n'a pas encore été montré quel est le rôle de la dimérisation dans l'activité de la télomérase. Afin d'élucider ce rôle, nous avons exprimé, reconstitué et purifié la télomérase humaine dimérique recombinante. Et pour étudier l'effet d'ARN mutants sur l'activité de la télomérase, nous avons développé une méthode pour reconstituer et enrichir en hétérodimères de télomérase. Les hétérodimères contiennent une sous-unité ARN sauvage et une sous-unité ARN mutée au niveau de la séquence de la matrice. Sur l'ARN muté nous avons introduit une étiquette aptamer ARN-S1 puis nous avons purifié la télomérase via l'etiquette Si. Nous avons montré que la dimérisation est essentielle pour l'activité de la télomérase. Nos données indiquent que chaque télomérase du dimère allonge leur substrat, l'ADN télomérique, indépendamment l'une de l'autre à chaque cycle d'élongation mais que l'addition itérative de répétitions télomériques nécessite une coopération entre les deux télomérases du dimère. Nous proposons donc un modèle dans lequel les deux télomérases du dimères se lient et allongent deux substrats télomères et que pendant l'élongation processive les deux enzymes subissent un changement de conformation de manière coordonnée, ce changement va permettre le repositionnement des substrats pour d'autres cycles d'additions de répétitions télomériques. Dyskeratosis congenita est une maladie mortelle due majoritairement au disfonctionnement de la moelle osseuse. Dans la forme autosomale de la maladie, l'ARN de la télomérase contient des mutations. En utilisant notre système de reconstitution, nous avons montré que ces ARN mutés, qui ont perdu leur activité enzymatique dans le cas d'un homodimère de mutants, sont dominant négatifs quand ils sont présents dans les hétérodimères sauvage/mutant. Cet effet trans-dominant négatif pourrait contribuer à la progression de la maladie. Abstract Telomeres are protein-DNA structures at the ends of linear eukaryotic chromosomes. The telomeric DNA consists of tandemly repeated sequences. Telomeric integrity is essential to protect chromosomal ends from nucleolytic degradation and to prevent their recognition as DNA double strand breaks. Due to the inability of the conventional DNA replication machinery to replicate terminal DNA stretches, telomeres shorten with continuous rounds of DNA replication. As soon as telomeres reach a critical length, their protective structure is lost and the deprotected telomeres will induce a DNA damage response leading to cell cycle arrest. To counteract telomere shortening, self-renewing cells, including bone marrow cells, activated lymphocytes and 80-90% of cancer cells express the cellular reverse transcriptase telomerase, which has the capacity to synthesize telomeric repeats by reverse transcription of a short template sequence encoded by its stably associated RNA subunit. Human telomerase is a processive enzyme for nucleotide as well as repeat addition. Both yeast and human telomerase are dimeric enzymes and recombinant human telomerase has been shown to contain two functionally cooperating RNAs and most probably also two protein subunits. However, it has remained unclear how dimerization may contribute to telomerase activity. To study the role of dimerization, we expressed, reconstituted and purified recombinant human telomerase. We also developed a new method to reconstitute and enrich for telomerase heterodimers containing wild-type (wt) and mutant telomerase RNA subunits. To this end we introduced an S1-RNA-aptamer tag into telomerase RNA and purified telomerase reconstituted with a mixture of untagged and tagged RNA via the S1-tag. Using this experimental system, we introduced template mutations in the tagged RNA subunit and examined the effect of mutant RNAs on wt telomerase activity in wt/mutant heterodimers. We obtained evidence that dimerization is essential for telomerase activity. Our data indicate that the two subunits elongate telomere substrates independently of each other during single rounds of elongation, but that iterative addition of telomeric repeats requires cooperation between the two subunits. We suggest a model, in which dimeric telomerases bind and elongate two telomere substrates and that the two subunits undergo coordinated conformational changes during processive elongation that enable repositioning the substrates for subsequent rounds of repeat addition. Dyskeratosis congenita is a multisystemic disease with bone marrow failure as the major cause of death. The autosomal form of this disease was found to harbor mutations in the telomerase RNA. Using our reconstitution system, we tested whether mutant dyskeratosis telomerase RNAs behaved in a dominant negative manner. We observed that dyskeratosis telomerase RNA mutants, which lacked enzymatic activity were dominant negative, when present in wt/ mutant heterodimers. The transdominant negative effect of these mutants may contribute to disease progression.