181 resultados para beam-foil technique
Resumo:
A cardiac-triggered free-breathing three-dimensional balanced fast field-echo projection magnetic resonance (MR) angiographic sequence with a two-dimensional pencil-beam aortic labeling pulse was developed for the renal arteries. For data acquisition during free breathing in eight healthy adults and seven consecutive patients with renal artery disease, real-time navigator technology was implemented. This technique allows high-spatial-resolution and high-contrast renal MR angiography and visualization of renal artery stenosis without exogenous contrast agent or breath hold. Initial promising results warrant larger clinical studies.
Resumo:
Objectifs: Evaluer la faisabilité, les résultats préliminaires à court et long terme du vissage percutané de vissage trans -isthmique sous anesthésie locale et contrôle scannerdes lyses isthmiques de bas grades.Matériels et méthodes: Etude prospective monocentrique réalisée sur 10 patients ayant une lyse isthmique grade 1 et 2 résistant au traitement médical conventionnel. Une évaluationclinique était réalisée à un mois, 3 mois, 6 mois et un an post-opératoire par un évaluateur indépendant. L'indication est posée en concertation avec le service dechirurgie orthopédique.Résultats: Les lyses isthmiques étaient situées en L5-S1 avec 6 grades 1 et 4 grades 2. L'échelle analogique de la douleur (VAS) variait de 6 a 9 avec une moyenne de 7,8.L'indication opératoire chirurgicale était posée pour tous les patients par arthrodèse postérieure lombo -sacree. Pour chaque patient 2 vis étaient positionnées soitun total de 20 vis. Un suivi clinique était réalisé de 28 a 36 mois. L'EVA et ODI diminuaient de 7,8 +/- 1,7 à 1,9 +/- 1,2 et de 62,3 +/- 17,2 à 15,1 +/- 6,0respectivement. L'ensemble des résultats était stable dans le temps en particulier à long terme.Conclusion: La fixation précise de la lyse isthmique améliore la symptomatologie et probablement évite un glissement vertébral plus important , un suivi à plus long terme surune serie de patients plus importante devrait confirmer cette hypothèse.
Resumo:
INTRODUCTION: The arteries of bifurcation aneurysms are sometimes so angulated or tortuous that an exchange maneuver is necessary to catheterize them with a balloon or stent delivery catheter. Because of the risk of distal wire perforation associated with exchange maneuvers, we sought to find an alternative technique. METHODS: Our experience shows that a microcatheter tends to preferentially follow a previously placed microcatheter, even if the initial catheterization might be challenging. Accessing an artery with two microcatheters simultaneously may thus be an alternative to an exchange maneuver. Because of this tendency for catheters to behave like sheep following one another, we named this method the sheeping technique (ST). The ST consists of (a) first placing a 1.7 French microcatheter into the division branch requiring balloon or stent protection to straighten the course of the arteries in order to facilitate and (b) positioning in the same artery of a larger and stiffer balloon or stent microcatheter. Once the second balloon or stent microcatheter is in place, the first microcatheter can be pulled back and used to coil the aneurysm. RESULTS: Between January 2009 and December 2012, The ST was successfully used in 208/246 procedures (85 %). Conversion to an exchange maneuver was necessary in 38/246 (15 %). There were no arterial perforations or ischemic events related to the handling of both microcatheters. CONCLUSION: The sheeping technique may improve safety by replacing the need for an exchange maneuver during difficult balloon- or stent-assisted coiling.
Resumo:
PURPOSE: To objectively characterize different heart tissues from functional and viability images provided by composite-strain-encoding (C-SENC) MRI. MATERIALS AND METHODS: C-SENC is a new MRI technique for simultaneously acquiring cardiac functional and viability images. In this work, an unsupervised multi-stage fuzzy clustering method is proposed to identify different heart tissues in the C-SENC images. The method is based on sequential application of the fuzzy c-means (FCM) and iterative self-organizing data (ISODATA) clustering algorithms. The proposed method is tested on simulated heart images and on images from nine patients with and without myocardial infarction (MI). The resulting clustered images are compared with MRI delayed-enhancement (DE) viability images for determining MI. Also, Bland-Altman analysis is conducted between the two methods. RESULTS: Normal myocardium, infarcted myocardium, and blood are correctly identified using the proposed method. The clustered images correctly identified 90 +/- 4% of the pixels defined as infarct in the DE images. In addition, 89 +/- 5% of the pixels defined as infarct in the clustered images were also defined as infarct in DE images. The Bland-Altman results show no bias between the two methods in identifying MI. CONCLUSION: The proposed technique allows for objectively identifying divergent heart tissues, which would be potentially important for clinical decision-making in patients with MI.
Resumo:
Superior vena cava (SVC) clamping can be required during thoracic surgery for SVC replacement or repair. In such cases, bypass techniques can be necessary to avoid hemodynamic instability, cerebral venous hypertension and hypoperfusion. Here, we report a novel and simple SVC bypass technique which does not require full systemic heparinization, specialized cannulation techniques or pumping devices and which can be applied percutaneously in the preoperative phase or intraoperatively. The preoperative shunt consisted in two Swan-Ganz catheters inserted in the jugular and femoral veins and connected by perfusion tubing with a three way stopcock. The intraoperative shunt consisted of a Pruitt(®)-catheter inserted in the left innominate vein and connected to a femoral Swan-Ganz catheter by perfusion tubing. We validated our system in seven patients undergoing SVC reconstruction. We monitored the systemic arterial blood pressures, the heart rate and vasoactive peptide requirements throughout the procedure. We also determined the neurological status and the in-hospital morbidity and mortality for each patient. Using this bypass, SVC clamping caused no hemodynamic instability, no neurological impairments and no in-hospital complications or deaths. This simple temporary SVC bypass procedure is safe and avoids hemodynamic instability and cerebral venous hypertension.
Resumo:
We have developed a digital holographic microscope (DHM), in a transmission mode, especially dedicated to the quantitative visualization of phase objects such as living cells. The method is based on an original numerical algorithm presented in detail elsewhere [Cuche et al., Appl. Opt. 38, 6994 (1999)]. DHM images of living cells in culture are shown for what is to our knowledge the first time. They represent the distribution of the optical path length over the cell, which has been measured with subwavelength accuracy. These DHM images are compared with those obtained by use of the widely used phase contrast and Nomarski differential interference contrast techniques.
Resumo:
PURPOSE: Ocular anatomy and radiation-associated toxicities provide unique challenges for external beam radiation therapy. For treatment planning, precise modeling of organs at risk and tumor volume are crucial. Development of a precise eye model and automatic adaptation of this model to patients' anatomy remain problematic because of organ shape variability. This work introduces the application of a 3-dimensional (3D) statistical shape model as a novel method for precise eye modeling for external beam radiation therapy of intraocular tumors. METHODS AND MATERIALS: Manual and automatic segmentations were compared for 17 patients, based on head computed tomography (CT) volume scans. A 3D statistical shape model of the cornea, lens, and sclera as well as of the optic disc position was developed. Furthermore, an active shape model was built to enable automatic fitting of the eye model to CT slice stacks. Cross-validation was performed based on leave-one-out tests for all training shapes by measuring dice coefficients and mean segmentation errors between automatic segmentation and manual segmentation by an expert. RESULTS: Cross-validation revealed a dice similarity of 95% ± 2% for the sclera and cornea and 91% ± 2% for the lens. Overall, mean segmentation error was found to be 0.3 ± 0.1 mm. Average segmentation time was 14 ± 2 s on a standard personal computer. CONCLUSIONS: Our results show that the solution presented outperforms state-of-the-art methods in terms of accuracy, reliability, and robustness. Moreover, the eye model shape as well as its variability is learned from a training set rather than by making shape assumptions (eg, as with the spherical or elliptical model). Therefore, the model appears to be capable of modeling nonspherically and nonelliptically shaped eyes.
Resumo:
OBJECTIVE: The purpose of this article is to assess the effect of the adaptive statistical iterative reconstruction (ASIR) technique on image quality in hip MDCT arthrography and to evaluate its potential for reducing radiation dose. SUBJECTS AND METHODS: Thirty-seven patients examined with hip MDCT arthrography were prospectively randomized into three different protocols: one with a regular dose (volume CT dose index [CTDIvol], 38.4 mGy) and two with a reduced dose (CTDIvol, 24.6 or 15.4 mGy). Images were reconstructed using filtered back projection (FBP) and four increasing percentages of ASIR (30%, 50%, 70%, and 90%). Image noise and contrast-to-noise ratio (CNR) were measured. Two musculoskeletal radiologists independently evaluated several anatomic structures and image quality parameters using a 4-point scale. They also jointly assessed acetabular labrum tears and articular cartilage lesions. RESULTS: With decreasing radiation dose level, image noise statistically significantly increased (p=0.0009) and CNR statistically significantly decreased (p=0.001). We also found a statistically significant reduction in noise (p=0.0001) and increase in CNR (p≤0.003) with increasing percentage of ASIR; in addition, we noted statistically significant increases in image quality scores for the labrum and cartilage, subchondral bone, overall diagnostic quality (up to 50% ASIR), and subjective noise (p≤0.04), and statistically significant reductions for the trabecular bone and muscles (p≤0.03). Regardless of the radiation dose level, there were no statistically significant differences in the detection and characterization of labral tears (n=24; p=1) and cartilage lesions (n=40; p≥0.89) depending on the ASIR percentage. CONCLUSION: The use of up to 50% ASIR in hip MDCT arthrography helps to reduce radiation dose by approximately 35-60%, while maintaining diagnostic image quality comparable to that of a regular-dose protocol using FBP.