102 resultados para Virus hemaglutinante do Japão
Resumo:
The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a haemorrhagic fever with high mortality in human. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process.
Resumo:
Hepatitis C virus (HCV) nonstructural protein 2 (NS2) is required for HCV polyprotein processing and particle assembly. It comprises an N-terminal membrane domain and a C-terminal, cytosolically oriented protease domain. Here, we demonstrate that the NS2 protease domain itself associates with cellular membranes. A single charged residue in the second α-helix of the NS2 protease domain is required for proper membrane association, NS2 protein stability, and efficient HCV polyprotein processing.
Resumo:
The host's immune response to hepatitis C virus (HCV) can result in the selection of characteristic mutations (adaptations) that enable the virus to escape this response. The ability of the virus to mutate at these sites is dependent on the incoming virus, the fitness cost incurred by the mutation, and the benefit to the virus in escaping the response. Studies examining viral adaptation in chronic HCV infection have shown that these characteristic immune escape mutations can be observed at the population level as human leukocyte antigen (HLA)-specific viral polymorphisms. We examined 63 individuals with chronic HCV infection who were infected from a single HCV genotype 1b source. Our aim was to determine the extent to which the host's immune pressure affects HCV diversity and the ways in which the sequence of the incoming virus, including preexisting escape mutations, can influence subsequent mutations in recipients and infection outcomes. Conclusion: HCV sequences from these individuals revealed 29 significant associations between specific HLA types within the new hosts and variations within their viruses, which likely represent new viral adaptations. These associations did not overlap with previously reported adaptations for genotypes 1a and 3a and possibly reflected a combination of constraint due to the incoming virus and genetic distance between the strains. However, these sites accounted for only a portion of the sites in which viral diversity was observed in the new hosts. Furthermore, preexisting viral adaptations in the incoming (source) virus likely influenced the outcomes in the new hosts.
Resumo:
Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane alpha-helix that may be involved in intramembrane protein-protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix alpha(0), formed by NS3 residues 12-23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design.
Resumo:
Hepatitis C virus (HCV) infection induces a state of oxidative stress by affecting mitochondrial-respiratory-chain activity. By using cell lines inducibly expressing different HCV constructs, we showed previously that viral-protein expression leads to severe impairment of mitochondrial oxidative phosphorylation and to major reliance on nonoxidative glucose metabolism. However, the bioenergetic competence of the induced cells was not compromised, indicating an efficient prosurvival adaptive response. Here, we show that HCV protein expression activates hypoxia-inducible factor 1 (HIF-1) by normoxic stabilization of its alpha subunit. In consequence, expression of HIF-controlled genes, including those coding for glycolytic enzymes, was significantly upregulated. Similar expression of HIF-controlled genes was observed in cell lines inducibly expressing subgenomic HCV constructs encoding either structural or nonstructural viral proteins. Stabilization and transcriptional activation of HIF-1alpha was confirmed in Huh-7.5 cells harboring cell culture-derived infectious HCV and in liver biopsy specimens from patients with chronic hepatitis C. The HCV-related HIF-1alpha stabilization was insensitive to antioxidant treatment. Mimicking an impairment of mitochondrial oxidative phosphorylation by treatment of inducible cell lines with oligomycin resulted in stabilization of HIF-1alpha. Similar results were obtained by treatment with pyruvate, indicating that accumulation of intermediate metabolites is sufficient to stabilize HIF-1alpha. These observations provide new insights into the pathogenesis of chronic hepatitis C and, possibly, the HCV-related development of hepatocellular carcinoma.
Resumo:
BACKGROUND: Natalizumab is used to prevent relapses and progression of disability in patients with multiple sclerosis but has been associated with progressive multifocal leukoencephalopathy (PML). We aimed to better understand the associations between JC virus, which causes PML, and natalizumab treatment. METHODS: We prospectively assessed patients with multiple sclerosis who started treatment with natalizumab. Blood and urine samples were tested for the presence of JC virus DNA with quantitative real-time PCR before treatment and at regular intervals after treatment onset for up to 18 months. At the same timepoints, by use of proliferation and enzyme-linked immunospot assays, the cellular immune responses against JC virus, Epstein-Barr virus, cytomegalovirus, myelin oligodendrocyte glycoprotein, and myelin oligodendrocyte basic protein (MOBP) were assessed. Humoral immune response specific to JC virus was assessed with an enzyme immunoassay. The same experiments were done on blood samples from patients with multiple sclerosis before and 10 months after the start of interferon beta treatment. FINDINGS: We assessed 24 patients with multiple sclerosis who received natalizumab and 16 who received interferon beta. In patients treated with natalizumab, JC virus DNA was not detected in the blood at any timepoint. However, JC virus DNA was present in the urine of six patients and in most of these patients the concentrations of JC virus DNA were stable over time. Compared with pretreatment values, the cellular immune response was increased to cytomegalovirus at 6 months, to JC virus at 1, 9, and 12 months, and to Epstein-Barr virus and MOBP at 12 months. Humoral responses remained stable. There were no increases in cellular immune responses specific to the viruses or myelin proteins in the 16 patients treated with interferon beta. INTERPRETATION: Natalizumab increases cellular immune responses specific to viruses and myelin proteins in the peripheral blood after 1 year, without evidence of viral reactivation. FUNDING: Swiss National Foundation, Swiss Society for Multiple Sclerosis, and Biogen Dompé.
Resumo:
We have determined the sequence of the first 1371 nucleotides at the 5' end of the genome of mouse mammary tumor virus using molecularly cloned proviral DNA of the GR virus strain. The most likely initiation codon used for the gag gene of mouse mammary tumor virus is the first one, located 312 nucleotides from the 5' end of the viral RNA. The 5' splicing site for the subgenomic mRNA's is located approximately 288 nucleotides downstream from the 5' end of the viral RNA. From the DNA sequence the amino acid sequence of the N-terminal half of the gag precursor protein, including p10 and p21, was deduced (353 amino acids).
Resumo:
Mouse mammary tumor virus (MMTV) is a retrovirus encoding a superantigen that is recognized in association with major histocompatibility complex class II by the variable region of the beta chain (V(beta)) of the T-cell receptor. The C-terminal 30 to 40 amino acids of the superantigen of different MMTVs display high sequence variability that correlates with the recognition of particular T-cell receptor V(beta) chains. Interestingly, MMTV(SIM) and mtv-8 superantigens are highly homologous but have nonoverlapping T-cell receptor V(beta) specificities. To determine the importance of these few differences for specific V(beta) interaction, we studied superantigen responses in mice to chimeric and mutant MMTV(SIM) and mtv-8 superantigens expressed by recombinant vaccinia viruses. We show that only a few changes (two to six residues) within the C terminus are necessary to modify superantigen recognition by specific V(beta)s. Thus, the introduction of the MMTV(SIM) residues 314-315 into the mtv-8 superantigen greatly decreased its V(beta)12 reactivity without gain of MMTV(SIM)-specific function. The introduction of MMTV(SIM)-specific residues 289 to 295, however, induced a recognition pattern that was a mixture of MMTV(SIM)- and mtv-8-specific V(beta) reactivities: both weak MMTV(SIM)-specific V(beta)4 and full mtv-8-specific V(beta)11 recognition were observed while V(beta)12 interaction was lost. The combination of the two MMTV(SIM)-specific regions in the mtv-8 superantigen established normal MMTV(SIM)-specific V(beta)4 reactivity and completely abolished mtv-8-specific V(beta)5, -11, and -12 interactions. These new functional superantigens with mixed V(beta) recognition patterns allowed us to precisely delineate sites relevant for molecular interactions between the SIM or mtv-8 superantigen and the T-cell receptor V(beta) domain within the 30 C-terminal residues of the viral superantigen.
Resumo:
The Tax protein of the human T-cell leukemia virus type 1 (HTLV-1) has been implicated in human T-cell immortalization. The primary function of Tax is to transcriptionally activate the HTLV-1 promoter, but Tax is also known to stimulate expression of cellular genes. It has been reported to associate with several transcription factors, as well as proteins not involved in transcription. To better characterize potential cellular targets of Tax present in infected cells, a Saccharomyces cerevisiae two-hybrid screening was performed with a cDNA library constructed from the HTLV-1-infected MT2 cell line. From this study, we found 158 positive clones representing seven different cDNAs. We focused our attention on the cDNA encoding the transcription factor CREB-2. CREB-2 is an unconventional member of the ATF/CREB family in that it lacks a protein kinase A (PKA) phosphorylation site and has been reported to negatively regulate transcription from the cyclic AMP response element of the human enkephalin promoter. In this study, we demonstrate that CREB-2 cooperates with Tax to enhance viral transcription and that its basic-leucine zipper C-terminal domain is required for both in vitro and in vivo interactions with Tax. Our results confirm that the activation of the HTLV-1 promoter through Tax and factors of the ATF/CREB family is PKA independent.
Resumo:
HIV virulence, i.e. the time of progression to AIDS, varies greatly among patients. As for other rapidly evolving pathogens of humans, it is difficult to know if this variance is controlled by the genotype of the host or that of the virus because the transmission chain is usually unknown. We apply the phylogenetic comparative approach (PCA) to estimate the heritability of a trait from one infection to the next, which indicates the control of the virus genotype over this trait. The idea is to use viral RNA sequences obtained from patients infected by HIV-1 subtype B to build a phylogeny, which approximately reflects the transmission chain. Heritability is measured statistically as the propensity for patients close in the phylogeny to exhibit similar infection trait values. The approach reveals that up to half of the variance in set-point viral load, a trait associated with virulence, can be heritable. Our estimate is significant and robust to noise in the phylogeny. We also check for the consistency of our approach by showing that a trait related to drug resistance is almost entirely heritable. Finally, we show the importance of taking into account the transmission chain when estimating correlations between infection traits. The fact that HIV virulence is, at least partially, heritable from one infection to the next has clinical and epidemiological implications. The difference between earlier studies and ours comes from the quality of our dataset and from the power of the PCA, which can be applied to large datasets and accounts for within-host evolution. The PCA opens new perspectives for approaches linking clinical data and evolutionary biology because it can be extended to study other traits or other infectious diseases.