125 resultados para Via de parto


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ca(2+)-regulated calcineurin/nuclear factor of activated T cells (NFAT) cascade controls alternative pathways of T-cell activation and peripheral tolerance. Here, we describe reduction of NFATc2 mRNA expression in the lungs of patients with bronchial adenocarcinoma. In a murine model of bronchoalveolar adenocarcinoma, mice lacking NFATc2 developed more and larger solid tumors than wild-type littermates. The extent of central tumor necrosis was decreased in the tumors in NFATc2((-/-)) mice, and this finding was associated with reduced tumor necrosis factor-alpha and interleukin-2 (IL-2) production by CD8(+) T cells. Adoptive transfer of CD8(+) T cells of NFATc2((-/-)) mice induced transforming growth factor-beta(1) in the airways of recipient mice, thus supporting CD4(+)CD25(+)Foxp-3(+)glucocorticoid-induced tumor necrosis factor receptor (GITR)(+) regulatory T (T(reg)) cell survival. Finally, engagement of GITR in NFATc2((-/-)) mice induced IFN-gamma levels in the airways, reversed the suppression by T(reg) cells, and costimulated effector CD4(+)CD25(+) (IL-2Ralpha) and memory CD4(+)CD127(+) (IL-7Ralpha) T cells, resulting in abrogation of carcinoma progression. Agonistic signaling through GITR, in the absence of NFATc2, thus emerges as a novel possible strategy for the treatment of human bronchial adenocarcinoma in the absence of NFATc2 by enhancing IL-2Ralpha(+) effector and IL-7Ralpha(+) memory-expressing T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In AKI, dying renal cells release intracellular molecules that stimulate immune cells to secrete proinflammatory cytokines, which trigger leukocyte recruitment and renal inflammation. Whether the release of histones, specifically, from dying cells contributes to the inflammation of AKI is unknown. In this study, we found that dying tubular epithelial cells released histones into the extracellular space, which directly interacted with Toll-like receptor (TLR)-2 (TLR2) and TLR4 to induce MyD88, NF-κB, and mitogen activated protein kinase signaling. Extracellular histones also had directly toxic effects on renal endothelial cells and tubular epithelial cells in vitro. In addition, direct injection of histones into the renal arteries of mice demonstrated that histones induce leukocyte recruitment, microvascular vascular leakage, renal inflammation, and structural features of AKI in a TLR2/TLR4-dependent manner. Antihistone IgG, which neutralizes the immunostimulatory effects of histones, suppressed intrarenal inflammation, neutrophil infiltration, and tubular cell necrosis and improved excretory renal function. In summary, the release of histones from dying cells aggravates AKI via both its direct toxicity to renal cells and its proinflammatory effects. Because the induction of proinflammatory cytokines in dendritic cells requires TLR2 and TLR4, these results support the concept that renal damage triggers an innate immune response, which contributes to the pathogenesis of AKI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevalence of obesity has markedly increased over the past few decades. Exploration of how hunger and satiety signals influence the reward system can help us understand non-homeostatic feeding. Insulin may act in the ventral tegmental area (VTA), a critical site for reward-seeking behavior, to suppress feeding. However, the neural mechanisms underlying insulin effects in the VTA remain unknown. We demonstrate that insulin, a circulating catabolic peptide that inhibits feeding, can induce long-term depression (LTD) of mouse excitatory synapses onto VTA dopamine neurons. This effect requires endocannabinoid-mediated presynaptic inhibition of glutamate release. Furthermore, after a sweetened high-fat meal, which elevates endogenous insulin, insulin-induced LTD is occluded. Finally, insulin in the VTA reduces food anticipatory behavior in mice and conditioned place preference for food in rats. Taken together, these results suggest that insulin in the VTA suppresses excitatory synaptic transmission and reduces anticipatory activity and preference for food-related cues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The formation of groups is a fundamental aspect of social organization, but there are still many questions regarding how social structure emerges from individuals making non-random associations. 2. Although food distribution and individual phenotypic traits are known to separately influence social organization, this is the first study, to our knowledge, experimentally linking them to demonstrate the importance of their interaction in the emergence of social structure. 3. Using an experimental design in which food distribution was either clumped or dispersed, in combination with individuals that varied in exploratory behaviour, our results show that social structure can be induced in the otherwise non-social European shore crab (Carcinus maenas). 4. Regardless of food distribution, individuals with relatively high exploratory behaviour played an important role in connecting otherwise poorly connected individuals. In comparison, low exploratory individuals aggregated into cohesive, stable subgroups (moving together even when not foraging), but only in tanks where resources were clumped. No such non-foraging subgroups formed in environments where food was evenly dispersed. 5. Body size did not accurately explain an individual's role within the network for either type of food distribution. 6. Because of their synchronized movements and potential to gain social information, groups of low exploratory crabs were more effective than singletons at finding food. 7. Because social structure affects selection, and social structure is shown to be sensitive to the interaction between ecological and behavioural differences among individuals, local selective pressures are likely to reflect this interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives-Peroxisome proliferator-activated receptor beta/delta (PPAR beta/delta) is a nuclear receptor found in platelets. PPAR beta/delta agonists acutely inhibit platelet function within a few minutes of addition. As platelets are anucleated, the effects of PPAR beta/delta agonists on platelets must be nongenomic. Currently, the particular role of PPAR beta/delta receptors and their intracellular signaling pathways in platelets are not known. Methods and Results-We have used mice lacking PPAR beta/delta (PPAR beta/delta(-/-)) to show the effects of the PPAR beta/delta agonist GW501516 on platelet adhesion and cAMP levels are mediated specifically by PPAR beta/delta, however GW501516 had no PPAR beta/delta-specific effect on platelet aggregation. Studies in human platelets showed that PKC alpha, which can mediate platelet activation, was bound and repressed by PPAR beta/delta after platelets were treated with GW501516. Conclusions-These data provide evidence of a novel mechanism by which PPAR receptors influence platelet activity and thereby thrombotic risk. (Arterioscler Thromb Vasc Biol. 2009; 29: 1871-1873.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation participates in tissue repair through multiple mechanisms including directly regulating the cell fate of resident progenitor cells critical for successful regeneration. Upon surveying target cell types of the TNF ligand TWEAK, we observed that TWEAK binds to all progenitor cells of the mesenchymal lineage and induces NF-kappaB activation and the expression of pro-survival, pro-proliferative and homing receptor genes in the mesenchymal stem cells, suggesting that this pro-inflammatory cytokine may play an important role in controlling progenitor cell biology. We explored this potential using both the established C2C12 cell line and primary mouse muscle myoblasts, and demonstrated that TWEAK promoted their proliferation and inhibited their terminal differentiation. By generating mice deficient in the TWEAK receptor Fn14, we further showed that Fn14-deficient primary myoblasts displayed significantly reduced proliferative capacity and altered myotube formation. Following cardiotoxin injection, a known trigger for satellite cell-driven skeletal muscle regeneration, Fn14-deficient mice exhibited reduced inflammatory response and delayed muscle fiber regeneration compared with wild-type mice. These results indicate that the TWEAK/Fn14 pathway is a novel regulator of skeletal muscle precursor cells and illustrate an important mechanism by which inflammatory cytokines influence tissue regeneration and repair. Coupled with our recent demonstration that TWEAK potentiates liver progenitor cell proliferation, the expression of Fn14 on all mesenchymal lineage progenitor cells supports a broad involvement of this pathway in other tissue injury and disease settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium sporozoites traverse several host cells before infecting hepatocytes. In the process, the plasma membranes of the cells are ruptured, resulting in the release of cytosolic factors into the microenvironment. This released endogenous material is highly stimulatory/immunogenic and can serve as a danger signal initiating distinct responses in various cells. Thus, our study aimed at characterizing the effect of cell material leakage during Plasmodium infection on cultured mouse primary hepatocytes and HepG2 cells. We observed that wounded cell-derived cytosolic factors activate NF-kappaB, a main regulator of host inflammatory responses, in cells bordering wounded cells, which are potential host cells for final parasite infection. This activation of NF-kappaB occurred shortly after infection and led to a reduction of infection load in a time-dependent manner in vitro and in vivo, an effect that could be reverted by addition of the specific NF-kappaB inhibitor BAY11-7082. Furthermore, no NF-kappaB activation was observed when Spect(-/-) parasites, which are devoid of hepatocyte traversing properties, were used. We provide further evidence that NF-kappaB activation causes the induction of inducible NO synthase expression in hepatocytes, and this is, in turn, responsible for a decrease in Plasmodium-infected hepatocytes. Furthermore, primary hepatocytes from MyD88(-/-) mice showed no NF-kappaB activation and inducible NO synthase expression upon infection, suggesting a role of the Toll/IL-1 receptor family members in sensing cytosolic factors. Indeed, lack of MyD88 significantly increased infection in vitro and in vivo. Thus, host cell wounding due to parasite migration induces inflammation which limits the extent of parasite infection

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chikungunya virus (CHIKV) is the causative agent of an outbreak that began in La Réunion in 2005 and remains a major public health concern in India, Southeast Asia, and southern Europe. CHIKV is transmitted to humans by mosquitoes and the associated disease is characterized by fever, myalgia, arthralgia, and rash. As viral load in infected patients declines before the appearance of neutralizing antibodies, we studied the role of type I interferon (IFN) in CHIKV pathogenesis. Based on human studies and mouse experimentation, we show that CHIKV does not directly stimulate type I IFN production in immune cells. Instead, infected nonhematopoietic cells sense viral RNA in a Cardif-dependent manner and participate in the control of infection through their production of type I IFNs. Although the Cardif signaling pathway contributes to the immune response, we also find evidence for a MyD88-dependent sensor that is critical for preventing viral dissemination. Moreover, we demonstrate that IFN-alpha/beta receptor (IFNAR) expression is required in the periphery but not on immune cells, as IFNAR(-/-)-->WT bone marrow chimeras are capable of clearing the infection, whereas WT-->IFNAR(-/-) chimeras succumb. This study defines an essential role for type I IFN, produced via cooperation between multiple host sensors and acting directly on nonhematopoietic cells, in the control of CHIKV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid amplification of cDNA ends (RACE) is a widely used approach for transcript identification. Random clone selection from the RACE mixture, however, is an ineffective sampling strategy if the dynamic range of transcript abundances is large. To improve sampling efficiency of human transcripts, we hybridized the products of the RACE reaction onto tiling arrays and used the detected exons to delineate a series of reverse-transcriptase (RT)-PCRs, through which the original RACE transcript population was segregated into simpler transcript populations. We independently cloned the products and sequenced randomly selected clones. This approach, RACEarray, is superior to direct cloning and sequencing of RACE products because it specifically targets new transcripts and often results in overall normalization of transcript abundance. We show theoretically and experimentally that this strategy leads indeed to efficient sampling of new transcripts, and we investigated multiplexing the strategy by pooling RACE reactions from multiple interrogated loci before hybridization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclooxygenase-derived prostaglandin E(2) (PGE(2)) is the predominant prostanoid found in most colorectal cancers (CRC) and is known to promote colon carcinoma growth and invasion. However, the key downstream signaling pathways necessary for PGE(2)-induced intestinal carcinogenesis are unclear. Here we report that PGE(2) indirectly transactivates PPARdelta through PI3K/Akt signaling, which promotes cell survival and intestinal adenoma formation. We also found that PGE(2) treatment of Apc(min) mice dramatically increased intestinal adenoma burden, which was negated in Apc(min) mice lacking PPARdelta. We demonstrate that PPARdelta is a focal point of crosstalk between the prostaglandin and Wnt signaling pathways which results in a shift from cell death to cell survival, leading to increased tumor growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to assess the clinical performance of the model combining areal bone mineral density (aBMD) at spine and microarchitecural texture (TBS) for the detection of the osteoporotic fracture. The Eastern European Study is a multicenter study (Serbia, Bulgaria, Romania and Ukraine) evaluating the role of TBS in routine clinical practice as a complement to aBMD. All scans were acquired on Hologic Discovery and GE Prodigy densitometers in a routine clinical manner. The additional clinical values of aBMD and TBS were analyzed using a two steps classification tree approach (aBMD followed by TBS tertiles) for all type of osteoporotic fracture (All-OP Fx). Sensitivity, specificity and accuracy of fracture detection as well as the Net Reclassification Index (NRI) were calculated. This study involves 1031 women subjects aged 45 and older recruited in east European countries. Clinical centers were cross-calibrated in terms of BMD and TBS. As expected, areal BMD (aBMD) at spine and TBS were only moderately correlated (r (2) = 0.19). Prevalence rate for All-OP Fx was 26 %. Subjects with fracture have significant lower TBS and aBMD than subjects without fracture (p < 0.01). TBS remains associated with the fracture even after adjustment for age and aBMD with an OR of 1.27 [1.07-1.51]. When using aBMD T-score of -2.5 and the lowest TBS tertile thresholds, both BMD and TBS were similar in terms of sensitivity (35 vs. 39 %), specificity (78 vs. 80 %) and accuracy (64 vs. 66 %). aBMD and TBS combination, induced a significant improvement in sensitivity (+28 %) and accuracy (+17 %) compared to aBMD alone whereas a moderate improvement was observed in terms of specificity (+9 %). The overall combination gain was 36 % as expressed using the NRI. aBMD and TBS combination decrease significantly the number of subjects needed to diagnose from 7 for aBMD alone to 2. In a multi-centre Eastern European cohort, we have shown that the use of TBS in addition to the aBMD permit to reclassified correctly more than one-third of the overall subjects. Furthermore, the number of subjects needed to diagnose fell to 2 subjects. Economical studies have to be performed to evaluate the gain induced by the use of TBS for the healthcare system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Asthma is a complex inflammatory syndrome caused by environmental factors in predisposed individuals (atopics). Its severity correlates with the presence of activated T lymphocytes and eosinophils in the bronchoalveolar lavage fluid (BALF). Induction of tolerance via the nasal route results in reduced recruitment of eosinophils into BALF upon challenge, inhibition of TH2 pro-inflammatory cytokine secretion and T cell hyporesponsiveness. Recently, CD4+CD25+ natural regulatory T cells (Treg) were proposed as key players in controlling the development of asthma and allergic disease. The objective of the present study is to investigate the role of CD4+CD25+ regulatory T cells in the mechanisms leading to tolerance in an established model of asthma. In this goal we depleted CD4+CD25+ T cells at different times during asthma and tolerance induction protocol in mice and looked at efficiency of tolerization (intranasal application of high dose of allergen) in the absence of natural Tregs. First, ovalbumin-sensitized mice were depleted of CD25+ T cells by intraperitoneal injection of anti-CD25 mAb (PC61) either for along-term (repeated injections of anti-CD25 from day 31 until the end of the protocol) or a short-term period (single injection of anti-CD25 before or after tolerance induction). We demonstrated that the long-term depletion of CD4+CD25+ T cells severely hampered tolerance induction (marked enhancement in eosinophil recruitment into BALF and a vigorous antigen specific T cell response to OVA upon allergen challenge) whereas transient depletions were not sufficient to do so. We then characterized T cell subsets by flow cytometry and observed that a large part of CD4+CD25+ T cells express Foxp3, an established marker of regulatory T cells. We also tested in-vitro suppressor activity of CD4+CD25+ T cells from tolerized mice by cell proliferation assay in coculture and observed a strong suppressive activity. Our data suggest that CD4+CD25+ T cells with regulatory properties play a crucial role in the induction of tolerance via the nasal route. The relationship between CD25+ natural Treg and inducible IL-10+ TRl-type Treg will have to be defined. RESUME L'asthme est un syndrome inflammatoire complexe provoqué par des facteurs environnementaux chez des individus génétiquement prédisposés (atopiques). Sa sévérité corrèle avec la présence des lymphocytes T activés et d'éosinophiles dans le lavage bronchoalvéolaire (BAL). L'induction de la tolérance par la voie nasale résulte en une diminution du recrutement des eosinophils dans le BAL, une inhibition de la sécrétion de cytokines pro-inflammatoires de type TH2 et de l'hypo-réponse des cellules T à l'allergène. Récemment, les cellules régulatrices «naturelles » de type CD4+CD25+ T (Tregs) ont été proposées comme acteurs essentiels dans le développement de l'asthme et de l'allergie. L'objectif de cette étude est d'étudier le rôle des cellules régulatrices CD4+CD25+ T dans les mécanismes menant à la tolérance dans un modèle établi d'asthme. Dans ce but nous avons déplété les cellules de CD4+CD25+ T à différents temps au cours du protocole d'induction d'asthme et de tolérance et nous avons regardé l'efficacité de l'induction de tolérance (application intranasale d'une dose importante d'allergène) en l'absence de Tregs. Dans un premier temps des souris sensibilisées à l'ovalbumine (OVA) ont été déplétées en cellules CD25+ T par l'injection intrapéritonéale d'anti-CD25 mAb (PC61) pour une longue période (injections répétées d'anti-CD25 du jour 31 jusqu'à la fin du protocole) ou pour une courte période (injection unique d'anti-CD25 avant ou après l'induction de tolérance). Nous avons démontré que la déplétion à long t erme des cellules de CD4+CD25+ T a empêché l'induction de tolérance (recrutement accru d'éosinophiles dans le BAL et une réponse vigoureuse des cellules T spécifiques de l'antigène après exposition à l'allergène) tandis des déplétions à court-terme n'ont pas cet effet. Nous avons ensuite caractérisé des sous-populations de cellules T par cytométrie de flux. Nous avons observé que la majorité des cellules CD4+CD25+ T expriment Foxp3, un marqueur établi des cellules régulatrices. Nous avons également examiné in vitro l'activité régulatrice des cellules T CD4+CD25+ issues de souris tolérisées. La prolifération de cellules T en coculture a démontré une forte activité suppressive des cellules CD4+CD25+. Nos données suggèrent que des cellules T CD4+CD25+ ayant des propriétés régulatrices jouent un rôle crucial dans l'induction de la tolérance par la voie nasale. Le rapport entre les cellules régulatrices naturelles CD4+CD25+ et les cellules régulatrices inductible de type TR1 I1-10+ devra être défini. RESUME DESTINE A UN LARGE PUBLIC L'asthme est une maladie inflammatoire des bronches, caractérisée par des crises de dyspnée (gêne respiratoire) témoignant d'une activation brutale des muscles bronchoconstricteurs, auxquelles s'associent un oedème et une hypersécrétion des muqueuses des voies aériennes ainsi qu'une importante production d'anticorps de l'allergie (IgE). Chez la plupart des enfants atteints et chez près de la moitié des adultes concernés par l'asthme, c'est une allergie à des substances présentes dans l'air environnant (acariens, pollens ou poils d'animaux) qui est à l'origine de la maladie. . Le traitement actuel de l'asthme repose d'une part sur le soulagement des symptômes grâce à des produits à base de stéroïdes ou des bronchodilatateurs. D'autre part, l'immunothérapie spécifique (aussi appelée désensibilisation) permet d'améliorer l'asthme et de «reprogrammer» le système immunitaire. C'est à ce jour, le seul moyen connu de faire régresser une allergie. Cependant l'immunothérapie prend beaucoup de temps (3 à 5 ans) et ne marche pas à tous les coups ni pour tous les antigènes. Il est donc important de mieux comprendre les mécanismes impliqués lors d'un tel traitement afin d'en améliorer l'efficacité. Af n de pouvoir investiguer en détail ces mécanismes des modèles d'immunothérapie ont été mis au point chez la souris. Notre étude se base sur un modèle d'asthme allergique chez la souris. Des souris sont rendues allergiques à l'ovalbumine (OVA) et présentent alors les caractéristiques majeures de l'asthme humain (recrutement de cellules inflammatoires dans les poumons, augmentation de la production d'IgE et de la résistance des bronches aux flux respiratoires). Ces souris asthmatiques une fois traitées par l'application nasale d'OVA (forme d'immunothérapie muqueuse) ne développent plus de réaction allergique lors d'une ré-exposition à l'allergène. Notre hypothèse est que cette «guérison» (tolérance) est liée à l'action de cellules (lymphocytes T CD4) dites «régulatrices» et caractérisées par le marqueur CD25. Pour le démontrer, nous avons éliminé ces cellules «régulatrices» CD25 de nos souris asthmatiques grâce à un anticorps monoclonal spécifique. Nous n'avons dès lors plus été en mesure d'induire une tolérance à l'allergène. Ceci suggère donc un rôle clé des cellules «régulatrices» T CD4+CD25+ dans la réussite de l'immunothérapie nasale dans notre modèle. Nos résultats n'excluent pas la participation d'autres cellules telles que les lymphocytes producteurs d'IL-10 (lymphocytes régulateurs induits). Le rôle respectif de ces sous-populations régulatrices devra être examiné dans les études à venir. Une meilleure maîtrise des mécanismes de régulation pourrait s'avérer cruciale pour améliorer les thérapies de l'asthme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenotypic convergence is a widespread and well-recognized evolutionary phenomenon. However, the responsible molecular mechanisms remain often unknown mainly because the genes involved are not identified. A well-known example of physiological convergence is the C4 photosynthetic pathway, which evolved independently more than 45 times [1]. Here, we address the question of the molecular bases of the C4 convergent phenotypes in grasses (Poaceae) by reconstructing the evolutionary history of genes encoding a C4 key enzyme, the phosphoenolpyruvate carboxylase (PEPC). PEPC genes belong to a multigene family encoding distinct isoforms of which only one is involved in C4 photosynthesis [2]. By using phylogenetic analyses, we showed that grass C4 PEPCs appeared at least eight times independently from the same non-C4 PEPC. Twenty-one amino acids evolved under positive selection and converged to similar or identical amino acids in most of the grass C4 PEPC lineages. This is the first record of such a high level of molecular convergent evolution, illustrating the repeatability of evolution. These amino acids were responsible for a strong phylogenetic bias grouping all C4 PEPCs together. The C4-specific amino acids detected must be essential for C4 PEPC enzymatic characteristics, and their identification opens new avenues for the engineering of the C4 pathway in crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although being a normal part of the skin flora, yeasts of the genus Malassezia are associated with several common dermatologic conditions including pityriasis versicolour, seborrhoeic dermatitis (SD), folliculitis, atopic eczema/dermatitis (AE/AD) and dandruff. While Malassezia spp. are aetiological agents of pityriasis versicolour, a causal role of Malassezia spp. in AE/AD and SD remains to be established. Previous reports have shown that fungi such as Candida albicans and Aspergillus fumigatus are able to efficiently activate the NLRP3 inflammasome leading to robust secretion of the pro-inflammatory cytokine IL-1β. To date, innate immune responses to Malassezia spp. are not well characterized. Here, we show that different Malassezia species could induce NLRP3 inflammasome activation and subsequent IL-1β secretion in human antigen-presenting cells. In contrast, keratinocytes were not able to secrete IL-1β when exposed to Malassezia spp. Moreover, we demonstrate that IL-1β secretion in antigen-presenting cells was dependent on Syk-kinase signalling. Our results identify Malassezia spp. as potential strong inducers of pro-inflammatory responses when taken up by antigen-presenting cells and identify C-type lectin receptors and the NLRP3 inflammasome as crucial actors in this process.