242 resultados para Territorial implications
Resumo:
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km(2) to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere.
Resumo:
The fatty acids from cocoa butters of different origins, varieties, and suppliers and a number of cocoa butter equivalents (Illexao 30-61, Illexao 30-71, Illexao 30-96, Choclin, Coberine, Chocosine-Illipe, Chocosine-Shea, Shokao, Akomax, Akonord, and Ertina) were investigated by bulk stable carbon isotope analysis and compound specific isotope analysis. The interpretation is based on principal component analysis combining the fatty acid concentrations and the bulk and molecular isotopic data. The scatterplot of the two first principal components allowed detection of the addition of vegetable fats to cocoa butters. Enrichment in heavy carbon isotope (C-13) of the bulk cocoa butter and of the individual fatty acids is related to mixing with other vegetable fats and possibly to thermally or oxidatively induced degradation during processing (e.g., drying and roasting of the cocoa beans or deodorization of the pressed fat) or storage. The feasibility of the analytical approach for authenticity assessment is discussed.
Resumo:
The fatty acids of olive oils of distinct quality grade from the most important European Union (EU) producer countries were chemically and isotopically characterized. The analytical approach utilized combined capillary column gas chromatography-mass spectrometry (GC/MS) and the novel technique of compound-specific isotope analysis (CSIA) through gas chromatography coupled to a stable isotope ratio mass spectrometer (IRMS) via a combustion (C) interface (GC/C/IRMS). This approach provides further insights into the control of the purity and geographical origin of oils sold as cold-pressed extra virgin olive oil with certified origin appellation. The results indicate that substantial enrichment in heavy carbon isotope (C-13) of the bulk oil and of individual fatty acids are related to (1) a thermally induced degradation due to deodorization or steam washing of the olive oils and (2) the potential blend with refined olive oil or other vegetable oils. The interpretation of the data is based on principal component analysis of the fatty acids concentrations and isotopic data (delta(13)C(oil), delta(13)C(16:0), delta(13)C(18:1)) and on the delta(13)C(16:0) vs delta(13)C(18:1) covariations. The differences in the delta(13)C values of palmitic and oleic acids are discussed in terms of biosynthesis of these acids in the plant tissue and admixture of distinct oils.
Resumo:
A distinct subset of T helper cells, named follicular T helper cells (T(FH), has been recently described. T(FH) cells are characterized by their homing capacities in the germinal centers of B-cell follicles where they interact with B cells, supporting B-cell survival and antibody responses. T(FH) cells can be identified by the expression of several markers including the chemokine CXCL13, the costimulatory molecules PD1 and inducible costimulator, and the transcription factor BCL6. They appear to be relevant markers for the diagnosis of angioimmunoblastic T-cell lymphoma (AITL) and have helped to recognize subsets of peripheral T-cell lymphoma, not otherwise specified, with nodal or cutaneous presentation expressing T(FH) antigens that might be related to AITL. In B-cell neoplasms, T(FH) cells are present within the microenvironment of nodular lymphocyte-predominant Hodgkin lymphoma and follicular lymphoma, where they likely support the growth of neoplastic germinal center-derived B cells. Interestingly, the amount of PD1+ cells in the neoplastic follicles might have a favorable impact on the outcome of follicular lymphoma patients. Altogether, the availability of antibodies directed to T(FH)-associated molecules has important diagnostic and prognostic implications in hematopathology. In addition, T(FH) cells could represent interesting targets in T(FH)-derived lymphomas such as AITL, or in some B-cell neoplasms where they act as part of the tumor microenvironment.
Resumo:
With the advent of highly active antiretroviral therapy (HAART), HIV infection has become a chronic disease. Various end-stage organ failures have now become common co-morbidities and are primary causes of mortality in HIV-infected patients. Solid-organ transplantation therefore has been proposed to these patients, as HIV infection is not anymore considered an absolute contraindication. The initial results of organ transplantation in HIV-infected patients are encouraging with no differences in patient and graft survival compared with non-HIV-infected patients. The use of immunosuppressive drug therapy in HIV-infected patients has so far not shown major detrimental effects, and some drugs in combination with HAART have even demonstrated possible beneficial effects for specific HIV settings. Nevertheless, organ transplantation in HIV-infected patients remains a complex intervention, and more studies will be required to clarify open questions such as long-term effects of drug interactions between antiretroviral and immunosuppressive drugs, outcome of recurrent HCV infection in HIV-infected patients, incidence of graft rejection, or long-term graft and patient survival. In this article, we first review the immunological pathogenesis of HIV infection and the rationale for using immunosuppression combined with HAART. We then discuss the most recent results of solid-organ transplantation in HIV-infected patients.
Resumo:
Repeated antimalarial treatment for febrile episodes and self-treatment are common in malaria-endemic areas. The intake of antimalarials prior to participating in an in vivo study may alter treatment outcome and affect the interpretation of both efficacy and safety outcomes. We report the findings from baseline plasma sampling of malaria patients prior to inclusion into an in vivo study in Tanzania and discuss the implications of residual concentrations of antimalarials in this setting. In an in vivo study conducted in a rural area of Tanzania in 2008, baseline plasma samples from patients reporting no antimalarial intake within the last 28 days were screened for the presence of 14 antimalarials (parent drugs or metabolites) using liquid chromatography-tandem mass spectrometry. Among the 148 patients enrolled, 110 (74.3%) had at least one antimalarial in their plasma: 80 (54.1%) had lumefantrine above the lower limit of calibration (LLC = 4 ng/mL), 7 (4.7%) desbutyl-lumefantrine (4 ng/mL), 77 (52.0%) sulfadoxine (0.5 ng/mL), 15 (10.1%) pyrimethamine (0.5 ng/mL), 16 (10.8%) quinine (2.5 ng/mL) and none chloroquine (2.5 ng/mL). The proportion of patients with detectable antimalarial drug levels prior to enrollment into the study is worrying. Indeed artemether-lumefantrine was supposed to be available only at government health facilities. Although sulfadoxine-pyrimethamine is only recommended for intermittent preventive treatment in pregnancy (IPTp), it was still widely used in public and private health facilities and sold in drug shops. Self-reporting of previous drug intake is unreliable and thus screening for the presence of antimalarial drug levels should be considered in future in vivo studies to allow for accurate assessment of treatment outcome. Furthermore, persisting sub-therapeutic drug levels of antimalarials in a population could promote the spread of drug resistance. The knowledge on drug pressure in a given population is important to monitor standard treatment policy implementation.
Resumo:
Signals detected with functional brain imaging techniques are based on the coupling of neuronal activity with energy metabolism. Techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) allow the visualization of brain areas that are activated by a variety of sensory, motor or cognitive tasks. Despite the technological sophistication of these brain imaging techniques, the precise mechanisms and cell types involved in coupling and in generating metabolic signals are still debated. Recent experimental data on the cellular and molecular mechanisms that underlie the fluorodeoxyglucose (FDG) - based PET imaging point to a critical role of a particular brain cell type, the astrocytes, in coupling neuronal activity to glucose utilization. Indeed, astrocytes possess receptors and re-uptake sites for a variety of neurotransmitters, including glutamate, the predominant excitatory neurotransmitter in the brain, In addition, astrocytic end-feet, which surround capillaries, are enriched in the specific glucose transporter GLUT-1. These features allow astrocytes to "sense" synaptic activity and to couple it with energy metabolism. In vivo and in vitro data support the following functional model: in response to glutamate released by active neurons, glucose is predominantly taken up by astrocytic end-feet; glucose is then metabolized to lactate which provides a preferred energy substrate for neurons. These data support the notion that astrocytes markedly contribute to the FDG-PET signal.
Resumo:
Glioblastoma multiforme is the most common and most malignant primary brain tumour with a dismal prognosis. The advent of new chemotherapies with alkylating agents crossing the blood-brain barrier, like temozolomide, have permitted to notably ameliorate the survival of a subgroup of patients. Improved outcome was associated with epigenetic silencing of the MGMT (O6-methylguanin methyltransferase) gene by promotor methylation, thereby blocking its repair capability, thus rendering the alkylating agents more effective. This particularity can be tested by methylation specific PCR on resected tumour tissue, best on fresh frozen biopsies, and allows identification of patients more susceptible to respond favourably to the treatment.