204 resultados para Systèmes non linéaires
Resumo:
BACKGROUND: The comparison of complete genomes has revealed surprisingly large numbers of conserved non-protein-coding (CNC) DNA regions. However, the biological function of CNC remains elusive. CNC differ in two aspects from conserved protein-coding regions. They are not conserved across phylum boundaries, and they do not contain readily detectable sub-domains. Here we characterize the persistence length and time of CNC and conserved protein-coding regions in the vertebrate and insect lineages. RESULTS: The persistence length is the length of a genome region over which a certain level of sequence identity is consistently maintained. The persistence time is the evolutionary period during which a conserved region evolves under the same selective constraints.Our main findings are: (i) Insect genomes contain 1.60 times less conserved information than vertebrates; (ii) Vertebrate CNC have a higher persistence length than conserved coding regions or insect CNC; (iii) CNC have shorter persistence times as compared to conserved coding regions in both lineages. CONCLUSION: Higher persistence length of vertebrate CNC indicates that the conserved information in vertebrates and insects is organized in functional elements of different lengths. These findings might be related to the higher morphological complexity of vertebrates and give clues about the structure of active CNC elements.Shorter persistence time might explain the previously puzzling observations of highly conserved CNC within each phylum, and of a lack of conservation between phyla. It suggests that CNC divergence might be a key factor in vertebrate evolution. Further evolutionary studies will help to relate individual CNC to specific developmental processes.
Resumo:
Mammalian genomes contain highly conserved sequences that are not functionally transcribed. These sequences are single copy and comprise approximately 1-2% of the human genome. Evolutionary analysis strongly supports their functional conservation, although their potentially diverse, functional attributes remain unknown. It is likely that genomic variation in conserved non-genic sequences is associated with phenotypic variability and human disorders. So how might their function and contribution to human disorders be examined?
Resumo:
BACKGROUND AND PURPOSE: Recent evidence suggests that there may be more than one Gilles de la Tourette syndrome (GTS)/tic disorder phenotype. However, little is known about the common patterns of these GTS/tic disorder-related comorbidities. In addition, sex-specific phenomenological data of GTS/tic disorder-affected adults are rare. Therefore, this community-based study used latent class analyses (LCA) to investigate sex-related and non-sex-related subtypes of GTS/tic disorders and their most common comorbidities. METHODS: The data were drawn from the PsyCoLaus study (n = 3691), a population-based survey conducted in Lausanne, Switzerland. LCA were performed on the data of 80 subjects manifesting motor/vocal tics during their childhood/adolescence. Comorbid attention-deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder, depressive, phobia and panic symptoms/syndromes comprised the selected indicators. The resultant classes were characterized by psychosocial correlates. RESULTS: In LCA, four latent classes provided the best fit to the data. We identified two male-related classes. The first class exhibited both ADHD and depression. The second class comprised males with only depression. Class three was a female-related class depicting obsessive thoughts/compulsive acts, phobias and panic attacks. This class manifested high psychosocial impairment. Class four had a balanced sex proportion and comorbid symptoms/syndromes such as phobias and panic attacks. The complementary occurrence of comorbid obsessive thoughts/compulsive acts and ADHD impulsivity was remarkable. CONCLUSIONS: To the best of our knowledge, this is the first study applying LCA to community data of GTS symptoms/tic disorder-affected persons. Our findings support the utility of differentiating GTS/tic disorder subphenotypes on the basis of comorbid syndromes.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the scale of a field site represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed downscaling procedure based on a non-linear Bayesian sequential simulation approach. The main objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity logged at collocated wells and surface resistivity measurements, which are available throughout the studied site. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariatekernel density function. Then a stochastic integration of low-resolution, large-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities is applied. The overall viability of this downscaling approach is tested and validated by comparing flow and transport simulation through the original and the upscaled hydraulic conductivity fields. Our results indicate that the proposed procedure allows obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
The purpose of this review is to critically appraise the pain assessment tools for non communicative persons in intensive care available in the literature and to determine their relevance for those with brain injury. Nursing and medical electronic databases were searched to identify pain tools, with a description of psychometric proprieties, in English and French. Seven of the ten tools were considered relevant and systematically evaluated according to the criteria and the indicators in the following five areas: conceptualisation, target population, feasibility and clinical utility, reliability and validity. Results indicate a number of well designed pain tools, but additional work is necessary to establish their accuracy and adequacy for the brain injured non communicative person in intensive care. Recommendations are made to choose the best tool for clinical practice and for research.
Resumo:
This paper explores the extent and limits of non-state authority in international affairs. While a number of studies have emphasised the role of state support and the ability of strategically situated actors to capture regulatory processes, they often fail to unpack the conditions under which this takes place. In order to probe the assumption that structural market power, backed by political support, equates regulatory capture, the article examines the interplay of political and economic considerations in the negotiations to establish worldwide interoperability standards needed for the development of Galileo as a genuinely European global navigation satellite system under civil control. It argues that industries supported and identified as strategic by public actors are more likely to capture standardisation processes than those with the largest market share expected to be created by the standards. This suggests that the influence of industries in space, air and maritime traffic control closely related to the militaro-industrial complex remains disproportionate in comparison to the prospective market of location-based services expected to vastly transform business practices, labour relations and many aspects of our daily life.
Resumo:
Experimental studies in nude mice with human colon-carcinoma grafts demonstrated the therapeutic efficiency of F(ab')2 fragments to carcinoembryonic antigen (CEA) labeled with a high dose of 131Iodine. A phase I/II study was designed to determine the maximum tolerated dose of 131I-labeled F(ab')2 fragments (131I-F(ab')2) from anti-CEA monoclonal antibody F6, its limiting organ toxicity and tumor uptake. Ten patients with non-resectable liver metastases from colorectal cancer (9 detected by CT scan and 1 by laparotomy) were treated with 131I-F(ab')2, doses ranging from 87 mCi to 300 mCi for the first 5 patients, with a constant 300-mCi dose for the last 5 patients. For all the patients, autologous bone marrow was harvested and stored before treatment. Circulating CEA ranged from 2 to 126 ng/ml. No severe adverse events were observed during or immediately following infusion of therapeutic doses. The 9 patients with radiologic evidence of liver metastases showed uptake of 131I-F(ab')2 in the metastases, as observed by single-photon-emission tomography. The only toxicity was hematologic, and no severe aplasia was observed when up to 250 mCi was infused. At the 300-mCi dose, 5 out of 6 patients presented grade-3 or -4 hematologic toxicity, with a nadir for neutrophils and thrombocytes ranging from 25 to 35 days after infusion. In these 5 cases, bone marrow was re-infused. No clinical complications were observed during aplasia. The tumor response could be evaluated in 9 out of 10 patients. One patient showed a partial response of one small liver metastasis (2 cm in diameter) and a stable evolution of the other metastases, 2 patients had stable disease, and 6 showed tumor progression at the time of evaluation (2 or 3 months after injection) by CT scan. This phase-I/II study demonstrated that a dose of 300 mCi of 131I-F(ab')2 from the anti-CEA Mab F6 is well tolerated with bone-marrow rescue, whereas a dose of 200 mCi can be infused without severe bone-marrow toxicity.
Resumo:
PURPOSE: To determine if, compared to pressure support (PS), neurally adjusted ventilatory assist (NAVA) reduces patient-ventilator asynchrony in intensive care patients undergoing noninvasive ventilation with an oronasal face mask. METHODS: In this prospective interventional study we compared patient-ventilator synchrony between PS (with ventilator settings determined by the clinician) and NAVA (with the level set so as to obtain the same maximal airway pressure as in PS). Two 20-min recordings of airway pressure, flow and electrical activity of the diaphragm during PS and NAVA were acquired in a randomized order. Trigger delay (T(d)), the patient's neural inspiratory time (T(in)), ventilator pressurization duration (T(iv)), inspiratory time in excess (T(iex)), number of asynchrony events per minute and asynchrony index (AI) were determined. RESULTS: The study included 13 patients, six with COPD, and two with mixed pulmonary disease. T(d) was reduced with NAVA: median 35 ms (IQR 31-53 ms) versus 181 ms (122-208 ms); p = 0.0002. NAVA reduced both premature and delayed cyclings in the majority of patients, but not the median T(iex) value. The total number of asynchrony events tended to be reduced with NAVA: 1.0 events/min (0.5-3.1 events/min) versus 4.4 events/min (0.9-12.1 events/min); p = 0.08. AI was lower with NAVA: 4.9 % (2.5-10.5 %) versus 15.8 % (5.5-49.6 %); p = 0.03. During NAVA, there were no ineffective efforts, or late or premature cyclings. PaO(2) and PaCO(2) were not different between ventilatory modes. CONCLUSION: Compared to PS, NAVA improved patient ventilator synchrony during noninvasive ventilation by reducing T(d) and AI. Moreover, with NAVA, ineffective efforts, and late and premature cyclings were absent.
Resumo:
SummaryGene duplication and neofunctidnalization are important processes in the evolution of phenotypic complexity. They account for important evolutionary novelties that confer ecological adaptation, such as the major histocompatibility complex (MHC), a multigene family with a central role in vertebrates' adaptive immune system. Multigene families, which evolved in large part through duplication, represent promising systems to study the still strongly depbated relative roles of neutral and adaptive processes in the evolution of phenotypic complexity. Detailed knowledge on ecological function and a well-characterized evolutionary history place the mammals' MHC amongst ideal study systems. However mammalian MHCs usually encompass several million base pairs and hold a large number of functional and non-functional duplicate genes, which makes their study complex. Avian MHCs on the other hand are usually way more compact, but the reconstruction of. their evolutionary history has proven notoriously difficult. However, no focused attempt has been undertaken so far to study the avian MHC evolutionary history in a broad phylogenetic context and using adequate gene regions.In the present PhD, we were able to make important contributions to the understanding of the long-term evolution of the avian MHC class II Β (MHCI1B). First, we isolated and characterized MHCIIB genes in barn owl (Tyto alba?, Strigiformes, Tytonidae), a species from an avian lineage in which MHC has not been studied so far. Our results revealed that with only two functional MHCIIB genes the MHC organization of barn owl may be similar to the 'minimal essential' MHC of chicken (Gallus gallus), indicating that simple MHC organization may be ancestral to birds. Taking advantage of the sequence information from barn owl, we studied the evolution of MHCIIB genes in 13 additional species of 'typical' owls (Strigiformes, Strigidae). Phylogenetic analyses revealed that according to their function, in owls the peptide-binding region (PBR) encoding exon 2 and the non-PBR encoding exon 3 evolve by different patterns. Exon 2 exhibited an evolutionary history of positive selection and recombination, while exon 3 traced duplication history and revealed two paralogs evolving divergently from each other in owls, and in a shorebird, the great snipe {Gallinago media). The results from exon 3 were the first ever from birds to demonstrate gene orthology in species that diverged tens of millions of years ago, and strongly questioned whether the taxa studied before provided an adequate picture of avian MHC evolution. In a follow-up study, we aimed at explaining a striking pattern revealed by phylogenetic trees analyzing the owl sequences along with MHCIIB sequences from other birds: One owl paralog (termed DAB1) grouped with sequences of passerines and falcons, while the other (DAB2) grouped with wildfowl, penguins and birds of prey. This could be explained by either a duplication event preceding the evolution of these bird orders, or by convergent evolution of similar sequences in a number of orders. With extensive phylogenetic analyses we were able to show, that indeed a duplication event preceeded the major avian radiation -100 my ago, and that following this duplication, the paralogs evolved under positive selection. Furthermore, we showed that the divergently evolving amino acid residues in the MHCIIB-encoded β-chain potentially interact with the MHCI I α-chain, and that molecular coevolution of the interacting residues may have been involved in the divergent evolution of the MHCIIB paralogs.The findings of this PhD are of particular interest to the understanding of the evolutionary history of the avian MHC and, by providing essential information on long-term gene history in the avian MHC, open promising perspectives for advances in the understanding of the evolution of multigene families in general, and for avian MHC organization in particular. Amongst others I discuss the importance of including protein structure in the phylogenetic study of multigene families, and the roles of ecological versus molecular selection pressures. I conclude by providing a population genomic perspective on avian MHC, which may serve as a basis for future research to investigate the relative roles of neutral processes involving effective population size effects and of adaptation in the evolution of avian MHC diversity and organization.RésuméLa duplication de gènes et leur néo-fonctionnalisation sont des processus importants dans l'évolution de la complexité phénotypique. Ils sont impliqués dans l'apparition d'importantes nouveautés évolutives favorisant l'adaptation écologique, comme c'est le cas pour le complexe majeur d'histocompatibilité