97 resultados para Subtropical Climate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AimHigh intra-specific genetic diversity is necessary for species adaptation to novel environments under climate change, but species tracking suitable conditions are losing alleles through successive founder events during range shift. Here, we investigated the relationship between range shift since the Last Glacial Maximum (LGM) and extant population genetic diversity across multiple plant species to understand variability in species responses. LocationThe circumpolar Arctic and northern temperate alpine ranges. MethodsWe estimated the climatic niches of 30 cold-adapted plant species using range maps coupled with species distribution models and hindcasted species suitable areas to reconstructions of the mid-Holocene and LGM climates. We computed the species-specific migration distances from the species glacial refugia to their current distribution and correlated distances to extant genetic diversity in 1295 populations. Differential responses among species were related to life-history traits. ResultsWe found a negative association between inferred migration distances from refugia and genetic diversities in 25 species, but only 11 had statistically significant negative slopes. The relationships between inferred distance and population genetic diversity were steeper for insect-pollinated species than wind-pollinated species, but the difference among pollination system was marginally independent from phylogenetic autocorrelation. Main conclusionThe relationships between inferred migration distances and genetic diversities in 11 species, independent from current isolation, indicate that past range shifts were associated with a genetic bottleneck effect with an average of 21% loss of genetic diversity per 1000km(-1). In contrast, the absence of relationship in many species also indicates that the response is species specific and may be modulated by plant pollination strategies or result from more complex historical contingencies than those modelled here.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mountain ecosystems have been less adversely affected by invasions of non-native plants than most other ecosystems, partially because most invasive plants in the lowlands are limited by climate and cannot grow under harsher high-elevation conditions. However, with ongoing climate change, invasive species may rapidly move upwards and threaten mid- then high-elevation mountain ecosystems. We evaluated this threat by predicting current and future potential distributions of 48 invasive plant species distributed in Switzerland (CH) and New South Wales (NSW), two areas where climate interacts differently with the elevation gradient. Using a species distribution modeling approach combining two scales, which builds on high-resolution data (< 250 m) but accounts for the global climatic niche of species, we found that different environmental drivers limit the elevation range of invasive species in the two regions, leading to region-specific species responses to climate change. Whereas the optimal suitability for plant invaders is predicted to markedly shift from the lowland to the montane or subalpine zone in CH, such an upward shift is far less pronounced in NSW where montane and subalpine elevations are currently already suitable. Non-native species able to invade the upper reaches of mountains in a future climate will be cold-tolerant in the Swiss Alps but preferring wet soils in the Australian Alps. Other plant traits were only marginally associated with elevation limits. These results demonstrate that a more systematic consideration of future distributions of invasive species is required in conservation plans of not yet invaded mountainous ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change affects the rate of insect invasions as well as the abundance, distribution and impacts of such invasions on a global scale. Among the principal analytical approaches to predicting and understanding future impacts of biological invasions are Species Distribution Models (SDMs), typically in the form of correlative Ecological Niche Models (ENMs). An underlying assumption of ENMs is that species-environment relationships remain preserved during extrapolations in space and time, although this is widely criticised. The semi-mechanistic modelling platform, CLIMEX, employs a top-down approach using species ecophysiological traits and is able to avoid some of the issues of extrapolation, making it highly applicable to investigating biological invasions in the context of climate change. The tephritid fruit flies (Diptera: Tephritidae) comprise some of the most successful invasive species and serious economic pests around the world. Here we project 12 tephritid species CLIMEX models into future climate scenarios to examine overall patterns of climate suitability and forecast potential distributional changes for this group. We further compare the aggregate response of the group against species-specific responses. We then consider additional drivers of biological invasions to examine how invasion potential is influenced by climate, fruit production and trade indices. Considering the group of tephritid species examined here, climate change is predicted to decrease global climate suitability and to shift the cumulative distribution poleward. However, when examining species-level patterns, the predominant directionality of range shifts for 11 of the 12 species is eastward. Most notably, management will need to consider regional changes in fruit fly species invasion potential where high fruit production, trade indices and predicted distributions of these flies overlap.