107 resultados para Reverse takeover
Resumo:
Notch1 (N1) receptor signaling is essential and sufficient for T cell development, and recently developed in vitro culture systems point to members of the Delta family as being the physiological N1 ligands. We explored the ability of Delta1 (DL1) and DL4 to induce T cell lineage commitment and/or maturation in vitro and in vivo from bone marrow (BM) precursors conditionally gene targeted for N1 and/or N2. In vitro DL1 can trigger T cell lineage commitment via either N1 or N2. N1- or N2-mediated T cell lineage commitment can also occur in the spleen after short-term BM transplantation. However, N2-DL1-mediated signaling does not allow further T cell maturation beyond the CD25(+) stage due to a lack of T cell receptor beta expression. In contrast to DL1, DL4 induces and supports T cell commitment and maturation in vitro and in vivo exclusively via specific interaction with N1. Moreover, comparative binding studies show preferential interaction of DL4 with N1, whereas binding of DL1 to N1 is weak. Interestingly, preferential N1-DL4 binding reflects reduced dependence of this interaction on Lunatic fringe, a glycosyl transferase that generally enhances the avidity of Notch receptors for Delta ligands. Collectively, our results establish a hierarchy of Notch-Delta interactions in which N1-DL4 exhibits the greatest capacity to induce and support T cell development.
Resumo:
IMPORTANCE: New data and antiretroviral regimens expand treatment choices in resource-rich settings and warrant an update of recommendations to treat adults infected with human immunodeficiency virus (HIV). OBJECTIVE: To provide updated treatment recommendations for adults with HIV, emphasizing when to start treatment; what treatment to start; the use of laboratory monitoring tools; and managing treatment failure, switches, and simplification. DATA SOURCES, STUDY SELECTION, AND DATA SYNTHESIS: An International Antiviral Society-USA panel of experts in HIV research and patient care considered previous data and reviewed new data since the 2012 update with literature searches in PubMed and EMBASE through June 2014. Recommendations and ratings were based on the quality of evidence and consensus. RESULTS: Antiretroviral therapy is recommended for all adults with HIV infection. Evidence for benefits of treatment and quality of available data increase at lower CD4 cell counts. Recommended initial regimens include 2 nucleoside reverse transcriptase inhibitors (NRTIs; abacavir/lamivudine or tenofovir disoproxil fumarate/emtricitabine) and a third single or boosted drug, which should be an integrase strand transfer inhibitor (dolutegravir, elvitegravir, or raltegravir), a nonnucleoside reverse transcriptase inhibitor (efavirenz or rilpivirine) or a boosted protease inhibitor (darunavir or atazanavir). Alternative regimens are available. Boosted protease inhibitor monotherapy is generally not recommended, but NRTI-sparing approaches may be considered. New guidance for optimal timing of monitoring of laboratory parameters is provided. Suspected treatment failure warrants rapid confirmation, performance of resistance testing while the patient is receiving the failing regimen, and evaluation of reasons for failure before consideration of switching therapy. Regimen switches for adverse effects, convenience, or to reduce costs should not jeopardize antiretroviral potency. CONCLUSIONS AND RELEVANCE: After confirmed diagnosis of HIV infection, antiretroviral therapy should be initiated in all individuals who are willing and ready to start treatment. Regimens should be selected or changed based on resistance test results with consideration of dosing frequency, pill burden, adverse toxic effect profiles, comorbidities, and drug interactions.
Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet.
Resumo:
OBJECTIVE-Obesity and associated pathologies are major global health problems. Transforming growth factor-beta/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic beta-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes.RESEARCH DESIGN AND METHODS-We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance.RESULTS-Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein beta-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor beta/delta and proliferator-activated receptor gamma expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid beta-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet.CONCLUSIONS-Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders.
Resumo:
PURPOSE: To determine whether bovine corneal endothelial (BCE) cells and keratocytes express the inducible form of nitric oxide synthase (NOS) after exposure to cytokines and lipopolysaccharide (LPS), and to study the regulation of NOS by growth factors. METHODS: Cultures of bovine corneal endothelial cells and keratocytes were exposed to increasing concentrations of LPS, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha). At selected intervals after exposure, nitrite levels in the supernatants were evaluated by the Griess reaction. Total RNA was extracted from the cell cultures, and messenger RNA levels for inducible NOS (NOS-2) were measured by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: Exposure of BCE cells and keratocytes to LPS and IFN-gamma resulted in an increase of nitrite levels that was potentiate by the addition of TNF-alpha. Analysis by RT-PCR demonstrated that nitrite release was correlated to the expression of NOS-2 messenger RNA in BCE cells and keratocytes. Stereoselective inhibitors of NOS and cycloheximide inhibited LPS-IFN-gamma-induced nitrite release in both cells, whereas transforming growth factor-beta (TGF-beta) slightly potentiated it. Fibroblast growth factor-2 (FGF-2) inhibited LPS-IFN-gamma-induced nitrite release and NOS-2 messenger RNA accumulation in keratocytes but not in BCE cells. CONCLUSIONS: The results demonstrate that in vitro activation of keratocytes and BCE cells by LPS and cytokines induces NOS-2 expression and release of large amounts of NO. The high amounts of NO could be involved in inflammatory corneal diseases in vivo.
Resumo:
Cefotaxime, given in two doses (each 100 mg/kg of body weight), produced a good bactericidal activity (-0.47 Deltalog(10) CFU/ml. h) which was comparable to that of levofloxacin (-0.49 Deltalog(10) CFU/ml. h) against a penicillin-resistant pneumococcal strain WB4 in experimental meningitis. Cefotaxime combined with levofloxacin acted synergistically (-1.04 Deltalog(10) CFU/ml. h). Synergy between cefotaxime and levofloxacin was also demonstrated in vitro in time killing assays and with the checkerboard method for two penicillin-resistant strains (WB4 and KR4). Using in vitro cycling experiments, the addition of cefotaxime in sub-MIC concentrations (one-eighth of the MIC) drastically reduced levofloxacin-induced resistance in the same two strains (64-fold increase of the MIC of levofloxacin after 12 cycles versus 2-fold increase of the MIC of levofloxacin combined with cefotaxime). Mutations detected in the genes encoding topoisomerase IV (parC and parE) and gyrase (gyrA and gyrB) confirmed the levofloxacin-induced resistance in both strains. Addition of cefotaxime in low doses was able to suppress levofloxacin-induced resistance.
Resumo:
Intraocular inflammation has been recognized as a major factor leading to blindness. Because tumor necrosis factor-alpha (TNF-alpha) enhances intraocular cytotoxic events, systemic anti-TNF therapies have been introduced in the treatment of severe intraocular inflammation, but frequent re-injections are needed and are associated with severe side effects. We have devised a local intraocular nonviral gene therapy to deliver effective and sustained anti-TNF therapy in inflamed eyes. In this study, we show that transfection of the ciliary muscle by plasmids encoding for three different variants of the p55 TNF-alpha soluble receptor, using electrotransfer, resulted in sustained intraocular secretion of the encoded proteins, without any detection in the serum. In the eye, even the shorter monomeric variant resulted in efficient neutralization of TNF-alpha in a rat experimental model of endotoxin-induced uveitis, as long as 3 months after transfection. A subsequent downregulation of interleukin (IL)-6 and iNOS and upregulation of IL-10 expression was observed together with a decreased rolling of inflammatory cells in anterior segment vessels and reduced infiltration within the ocular tissues. Our results indicate that using a nonviral gene therapy strategy, the local self-production of monomeric TNF-alpha soluble receptors induces a local immunomodulation enabling the control of intraocular inflammation.
Resumo:
We simulated a meta-population with random dispersal among demes but local mating within demes to investigate conditions under which a dominant female-determining gene W, with no individual selection advantage, can invade and become fixed in females, changing the population from male to female heterogamety. Starting with one mutant W in a single deme, the interaction of sex ratio selection and random genetic drift causes W to be fixed among females more often than a comparable neutral mutation with no influence on sex determination, even when YY males have slightly reduced viability. Meta-population structure and interdeme selection can also favour the fixation of W. The reverse transition from female to male heterogamety can also occur with higher probability than for a comparable neutral mutation. These results help to explain the involvement of sex-determining genes in the evolution of sex chromosomes and in sexual selection and speciation.
Resumo:
Despite the central role of quantitative PCR (qPCR) in the quantification of mRNA transcripts, most analyses of qPCR data are still delegated to the software that comes with the qPCR apparatus. This is especially true for the handling of the fluorescence baseline. This article shows that baseline estimation errors are directly reflected in the observed PCR efficiency values and are thus propagated exponentially in the estimated starting concentrations as well as 'fold-difference' results. Because of the unknown origin and kinetics of the baseline fluorescence, the fluorescence values monitored in the initial cycles of the PCR reaction cannot be used to estimate a useful baseline value. An algorithm that estimates the baseline by reconstructing the log-linear phase downward from the early plateau phase of the PCR reaction was developed and shown to lead to very reproducible PCR efficiency values. PCR efficiency values were determined per sample by fitting a regression line to a subset of data points in the log-linear phase. The variability, as well as the bias, in qPCR results was significantly reduced when the mean of these PCR efficiencies per amplicon was used in the calculation of an estimate of the starting concentration per sample.
Resumo:
The Upper Lahul region in the NW Himalaya is located in the transition zone between the High Himalayan Crystalline (HHC) to the SW and the Tethyan Zone sedimentary series to the NE. The tectonic evolution of these domains during the Himalayan Orogeny is the consequence of a succession of five deformation events. An early D1 phase corresponds to synmetamorphic, NE verging folding. This deformation created the Tandi Syncline, which consists of Permian to Jurassic Tethyan metasediments cropping out in the core of a large-scale synformal fold within the HHC paragneiss. This tectonic event is interpreted as related to a NE directed nappe stacking (Shikar Beh Nappe), probably during the late Eocene to the early Oligocene. A subsequent D2a phase caused SW verging folding in the HHC. This deformation is interpreted as contemporaneous with late Oligocene to early Miocene SW directed thrusting along the Main Central Thrust. In the Tethyan Zone, a D2b phase is marked by a decollement thrust, a system of reverse faults, and gentle folds, associated with SW directed tectonic movements. This deformation is related to an imbricate structure, characteristic of a shallow structural level, and developed in the frontal part of a nappe affecting the Tethyan Zone units of SE Zanskar (Nyimaling-Tsarap Nappe). A later D3 phase generated the Chandra Dextral Shear Zone (CDSZ), a large-scale, ductile, dextral strike-slip shear zone, located in the transition zone between the HHC and the Tethyan Himalaya. The CDSZ most likely represents a part of a system of early Miocene extensional and/or dextral, strike-slip shear zones-observed at the HHC-Tethyan Zone contact along the entire Himalaya. A final D4 phase induced large-scale doming and NE:verging back folding.
Resumo:
BACKGROUND: Early virological failure of antiretroviral therapy associated with the selection of drug-resistant human immunodeficiency virus type 1 in treatment-naive patients is very critical, because virological failure significantly increases the risk of subsequent failures. Therefore, we evaluated the possible role of minority quasispecies of drug-resistant human immunodeficiency virus type 1, which are undetectable at baseline by population sequencing, with regard to early virological failure. METHODS: We studied 4 patients who experienced early virological failure of a first-line regimen of lamivudine, tenofovir, and either efavirenz or nevirapine and 18 control patients undergoing similar treatment without virological failure. The key mutations K65R, K103N, Y181C, M184V, and M184I in the reverse transcriptase were quantified by allele-specific real-time polymerase chain reaction performed on plasma samples before and during early virological treatment failure. RESULTS: Before treatment, none of the viruses showed any evidence of drug resistance in the standard genotype analysis. Minority quasispecies with either the M184V mutation or the M184I mutation were detected in 3 of 18 control patients. In contrast, all 4 patients whose treatment was failing had harbored drug-resistant viruses at low frequencies before treatment, with a frequency range of 0.07%-2.0%. A range of 1-4 mutations was detected in viruses from each patient. Most of the minority quasispecies were rapidly selected and represented the major virus population within weeks after the patients started antiretroviral therapy. All 4 patients showed good adherence to treatment. Nonnucleoside reverse-transcriptase inhibitor plasma concentrations were in normal ranges for all 4 patients at 2 separate assessment times. CONCLUSIONS: Minority quasispecies of drug-resistant viruses, detected at baseline, can rapidly outgrow and become the major virus population and subsequently lead to early therapy failure in treatment-naive patients who receive antiretroviral therapy regimens with a low genetic resistance barrier.
Resumo:
Neutrophils are rapidly and massively recruited to sites of microbial infection, where they can influence the recruitment of dendritic cells. Here, we have analyzed the role of neutrophil released chemokines in the early recruitment of dendritic cells (DCs) in an experimental model of Leishmania major infection. We show in vitro, as well as during infection, that the parasite induced the expression of CCL3 selectively in neutrophils from L. major resistant mice. Neutrophil-secreted CCL3 was critical in chemotaxis of immature DCs, an effect lost upon CCL3 neutralisation. Depletion of neutrophils prior to infection, as well as pharmacological or genetic inhibition of CCL3, resulted in a significant decrease in DC recruitment at the site of parasite inoculation. Decreased DC recruitment in CCL3(-/-) mice was corrected by the transfer of wild type neutrophils at the time of infection. The early release of CCL3 by neutrophils was further shown to have a transient impact on the development of a protective immune response. Altogether, we identified a novel role for neutrophil-secreted CCL3 in the first wave of DC recruitment to the site of infection with L. major, suggesting that the selective release of neutrophil-secreted chemokines may regulate the development of immune response to pathogens.
Resumo:
Hepatorenal syndrome is a particular form of functional renal failure which may develop in patients with liver cirrhosis. On a clinical standpoint, precise diagnostic criteria have been established to clearly define this entity, whereas recent advances in the understanding of the biology of vasoactive mediators and the physiology of microcirculation have allowed to better anticipate its pathophysiological mechanisms. During the course of cirrhosis, sinusoidal portal hypertension leads to splanchnic and systemic vasodilation, responsible for a reduction of effective arterial blood volume. As a result, a state of intense renal vasoconstriction develops, leading to renal failure in the absence of any organic renal disease. At this stage, liver transplantation is the only definitive therapy able to reverse renal dysfunction. In recent years, innovative therapies have shown promise to prolong survival in patients with hepatorenal syndrome, including the administration of analogs of vasopressin (mainly terlipressin), the insertion of transjugular intrahepatic portosystemic shunts and the use of novel techniques of dialysis. On a preventive viewpoint, several simple measures have been shown to reduce the risk of hepatorenal syndrome in cirrhotic patients, including the appropriate use of diuretics, the avoidance of nephrotoxic drugs, the prophylaxis of spontaneous bacterial peritonitis and optimal fluid management in patients undergoing large volume paracentesis.
Resumo:
OBJECTIVE: To compare the expression of the prostaglandin (PG) E(2) transporter multidrug resistance-associated protein 4 (MRP4) in eutopic and ectopic endometrial tissue from endometriosis patients with that of control subjects and to examine whether MRP4 is regulated by the antiinflammatory lipid lipoxin A(4) (LXA(4)) in endometriotic epithelial cells. DESIGN: Molecular analysis in human samples and a cell line. SETTING: Two university hospitals and a private clinic. PATIENT(S): A total of 59 endometriosis patients and 32 age- and body mass index-matched control subjects undergoing laparoscopy or hysterectomy. INTERVENTION(S): Normal, eutopic, and ectopic endometrial biopsies as well as peritoneal fluid were obtained during surgery performed during the proliferative phase of the menstrual cycle. 12Z endometriotic epithelial cells were used for in vitro mechanistic studies. MAIN OUTCOME MEASURE(S): Tissue MRP4 mRNA levels were quantified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and localization was analyzed with the use of immunohistochemistry. Cellular MRP4 mRNA and protein were quantified by qRT-PCR and Western blot, respectively. PGE(2) was measured in peritoneal fluid and cell supernatants using an enzyme immunoassay (EIA). RESULT(S): MRP4 was expressed in eutopic and ectopic endometrium, where it was overexpressed in peritoneal lesions and localized in the cytoplasm of glandular epithelial cells. LXA(4) attenuated MRP4 mRNA and protein levels in endometriotic epithelial cells in a dose-dependent manner, while not affecting the expression of enzymes involved in PGE(2) metabolism. Investigations employing receptor antagonists and small interfering RNA revealed that this occurred through estrogen receptor α. Accordingly, LXA(4) treatment inhibited extracellular PGE(2) release. CONCLUSION(S): We report for the first time that MRP4 is expressed in human endometrium, elevated in peritoneal endometriosis, and modulated by LXA(4) in endometriotic epithelial cells.
Resumo:
We report on successful early eculizumab administration to treat acute antibody-mediated rejection (ABMR) in a highly sensitized kidney transplant recipient. The recipient is a 7-year-old boy who received, 6 months after a desensitization protocol with monthly intravenous immunoglobulin infusion, a second kidney transplant in the presence of low donor-specific antibodies (DSAs). Both pretransplant lymphocytotoxic and flow cytometric crossmatch were negative. Allograft function recovered promptly, with excellent initial function. On postoperative day (POD) 4, the child developed significant proteinuria with an acute rise in serum creatinine. Allograft biopsy showed severe acute ABMR. Intravenous eculizumab (600 mg), preceded by a single session of plasmapheresis, was administered on POD 5 and 12 along with a 4-day thymoglobulin course. After the first dose of eculizumab, a strikingly rapid normalization of allograft function with a decrease in proteinuria occurred. However, because circulating DSA levels remained elevated, the child received 3 doses of intravenous immunoglobulin (POD 15, 16, and 17), with a significant subsequent decrease in DSA levels. At 9 months after transplant, the child continues to maintain excellent allograft function with undetectable circulating DSA levels. This unique case highlights the potential efficacy of using early eculizumab to rapidly reverse severe ABMR in pediatric transplantation, and therefore it suggests a novel therapeutic approach to treat acute ABMR.