100 resultados para Resistance to the change
Resumo:
The control mechanisms and information content of melanin-based colourations are still debated among evolutionary biologists. Recent hypotheses contend that molecules involved in melanogenesis alter other physiological processes, thereby generating covariation between melanin-based colouration and other phenotypic attributes. Interestingly, several molecules such as agouti and glutathione that trigger the production of reddish-brown pheomelanin have an inhibitory effect on the production of black/grey eumelanin, whereas other hormones, such as melanocortins, have the opposite effect. We therefore propose the hypothesis that phenotypic traits positively correlated with the degree of eumelanin-based colouration may be negatively correlated with the degree of pheomelanin-based colouration, or vice versa. Given the role played by the melanocortin system and glutathione on melanogenesis and resistance to oxidative stress, we examined the prediction that resistance to oxidative stress is positively correlated with the degree of black colouration but negatively with the degree of reddish colouration. Using the barn owl (Tyto alba) as a model organism, we swapped eggs between randomly chosen nests to allocate genotypes randomly among environments and then we measured resistance to oxidative stress using the KRL assay in nestlings raised by foster parents. As predicted, the degree of black and reddish pigmentations was positively and negatively correlated, respectively, with resistance to oxidative stress. Our results reveal that eumelanin- and pheomelanin-based colourations can be redundant signals of resistance to oxidative stress.
Resumo:
To better understand the relationship between tumor-host interactions and the efficacy of chemotherapy, we have developed an analytical approach to quantify several biological processes observed in gene expression data sets. We tested the approach on tumor biopsies from individuals with estrogen receptor-negative breast cancer treated with chemotherapy. We report that increased stromal gene expression predicts resistance to preoperative chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC) in subjects in the EORTC 10994/BIG 00-01 trial. The predictive value of the stromal signature was successfully validated in two independent cohorts of subjects who received chemotherapy but not in an untreated control group, indicating that the signature is predictive rather than prognostic. The genes in the signature are expressed in reactive stroma, according to reanalysis of data from microdissected breast tumor samples. These findings identify a previously undescribed resistance mechanism to FEC treatment and suggest that antistromal agents may offer new ways to overcome resistance to chemotherapy.
Resumo:
The priming agent β-aminobutyric acid (BABA) is known to enhance Arabidopsis resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 by potentiating salicylic acid (SA) defence signalling, notably PR1 expression. The molecular mechanisms underlying this phenomenon remain unknown. A genome-wide microarray analysis of BABA priming during Pst DC3000 infection revealed direct and primed up-regulation of genes that are responsive to SA, the SA analogue benzothiadiazole and pathogens. In addition, BABA was found to inhibit the Arabidopsis response to the bacterial effector coronatine (COR). COR is known to promote bacterial virulence by inducing the jasmonic acid (JA) response to antagonize SA signalling activation. BABA specifically repressed the JA response induced by COR without affecting other plant JA responses. This repression was largely SA-independent, suggesting that it is not caused by negative cross-talk between SA and JA signalling cascades. Treatment with relatively high concentrations of purified COR counteracted BABA inhibition. Under these conditions, BABA failed to protect Arabidopsis against Pst DC3000. BABA did not induce priming and resistance in plants inoculated with a COR-deficient strain of Pst DC3000 or in the COR-insensitive mutant coi1-16. In addition, BABA blocked the COR-dependent re-opening of stomata during Pst DC3000 infection. Our data suggest that BABA primes for enhanced resistance to Pst DC3000 by interfering with the bacterial suppression of Arabidopsis SA-dependent defences. This study also suggests the existence of a signalling node that distinguishes COR from other JA responses.
Resumo:
The widespread misuse of drugs has increased the number of multiresistant bacteria, and this means that tools that can rapidly detect and characterize bacterial response to antibiotics are much needed in the management of infections. Various techniques, such as the resazurin-reduction assays, the mycobacterial growth indicator tube or polymerase chain reaction-based methods, have been used to investigate bacterial metabolism and its response to drugs. However, many are relatively expensive or unable to distinguish between living and dead bacteria. Here we show that the fluctuations of highly sensitive atomic force microscope cantilevers can be used to detect low concentrations of bacteria, characterize their metabolism and quantitatively screen (within minutes) their response to antibiotics. We applied this methodology to Escherichia coli and Staphylococcus aureus, showing that live bacteria produced larger cantilever fluctuations than bacteria exposed to antibiotics. Our preliminary experiments suggest that the fluctuation is associated with bacterial metabolism.
Resumo:
Introduction: Trastuzumab (T) is a cornerstone in the treatment of patients with HER2-overexpressing advanced breast cancer and development of resistance to T is a major therapeutic problem. HER-2 is part of a highly interactive signaling network that may impair efficacy of endocrine therapy. A sequential treatment design was chosen in this trial to ensure complete resistance to single agent therapy before receiving both a non-steroidal aromatase inhibitor (AI) and T. Any kind of clinical activity with combined treatment of AI and T after progression of single agent treatments could indicate restoration of sensitivity as a consequence of cross-talking and networking between both pathways. Methods: Key eligibility criteria included postmenopausal patients (pts.) with advanced, measurable, HER-2 positive (assessed by FISH, ratio (≥2)), HR positive disease and progression on prior treatment with a non-steroidal AI, e.g. letrozole or anastrozole, either in an adjuvant or advanced setting. Pts. received standard dose T monotherapy either weekly or three-weekly in step 1 and upon disease progression, continued T in combination with letrozole in step 2. The primary endpoint was clinical benefit response (CBR: CR, PR or SD for at least 24 weeks (+/- 1 week) according to RECIST) in step 2. Results: Thirteen pts. were enrolled in five centers in Switzerland. In step 1, six pts. (46%) achieved CBR. Median time to progression (TTP) was 161 days (Range: 50 - 627). Based on data collected until the end of May 2010, CBR was observed in seven out of the eleven evaluable pts. (64%) in step 2, including one pt. with partial response. Four of the seven pts. within step 2 that achieved CBR also had CBR in step 1. Seven out of eleven pts. have documented tumor progression during step 2 treatment. Median TTP for all eleven pts. was 184 days (range 61 - 471). Mean time on study treatment (TTP in step 1 plus TTP in step 2) for pts. reaching step 2 was 380 days (range 174 - 864). Adverse events were generally mild. Conclusion: Results of this proof-of-principle trial suggest that complete resistance to both AI and T can be overcome in a proportion of pts. by combined treatment of AI and T, as all pts. served as their own control. Our results appear promising for a new treatment strategy which offers a chemotherapy-free and well-tolerated option for at least a subset of the pts. with HR positive, HER-2 positive breast cancer. Further trials will need to corroborate this finding.
Resumo:
The establishment of legislative rules about explosives in the eighties has reduced the illicit use of military and civilian explosives. However, bomb-makers have rapidly taken advantage of substances easily accessible and intended for licit uses to produce their own explosives. This change in strategy has given rise to an increase of improvised explosive charges, which is moreover assisted by the ease of implementation of the recipes, widely available through open sources. While the nature of the explosive charges has evolved, instrumental methods currently used in routine, although more sensitive than before, have a limited power of discrimination and allow mostly the determination of the chemical nature of the substance. Isotope ratio mass spectrometry (IRMS) has been applied to a wide range of forensic materials. Conclusions drawn from the majority of the studies stress its high power of discrimination. Preliminary studies conducted so far on the isotopic analysis of intact explosives (pre-blast) have shown that samples with the same chemical composition and coming from different sources could be differentiated. The measurement of stable isotope ratios appears therefore as a new and remarkable analytical tool for the discrimination or the identification of a substance with a definite source. However, much research is still needed to assess the validity of the results in order to use them either in an operational prospect or in court. Through the isotopic study of black powders and ammonium nitrates, this research aims at evaluating the contribution of isotope ratio mass spectrometry to the investigation of explosives, both from a pre-blast and from a post-blast approach. More specifically, the goal of the research is to provide additional elements necessary to a valid interpretation of the results, when used in explosives investigation. This work includes a fundamental study on the variability of the isotopic profile of black powder and ammonium nitrate in both space and time. On one hand, the inter-variability between manufacturers and, particularly, the intra-variability within a manufacturer has been studied. On the other hand, the stability of the isotopic profile over time has been evaluated through the aging of these substances exposed to different environmental conditions. The second part of this project considers the applicability of this high-precision technology to traces and residues of explosives, taking account of the characteristics specific to the field, including their sampling, a probable isotopic fractionation during the explosion, and the interferences with the matrix of the site.
Resumo:
Climate impact studies have indicated ecological fingerprints of recent global warming across a wide range of habitats. Whereas these studies have shown responses from various local case studies, a coherent large-scale account on temperature-driven changes of biotic communities has been lacking. Here we use 867 vegetation samples above the treeline from 60 summit sites in all major European mountain systems to show that ongoing climate change gradually transforms mountain plant communities. We provide evidence that the more cold-adapted species decline and the more warm-adapted species increase, a process described here as thermophilisation. At the scale of individual mountains this general trend may not be apparent, but at the¦larger, continental scale we observed a significantly higher abundance of thermophilic species in 2008, compared with 2001. Thermophilisation of mountain plant communities mirrors the degree of recent warming and is more pronounced in areas where the temperature increase has been higher. In view of the projected climate change the observed transformation suggests a progressive decline of cold mountain habitats and their biota.
Resumo:
PURPOSE: This study aimed to determine the neuro-mechanical and metabolic adjustments in the lower limbs induced by the running anaerobic sprint test (the so-called RAST). METHODS: Eight professional football players performed 6 × 35 m sprints interspersed with 10 s of active recovery on artificial turf with their football shoes. Sprinting mechanics (plantar pressure insoles), root mean square activity of the vastus lateralis (VL), rectus femoris (RF), and biceps femoris (BF) muscles (surface electromyography, EMG) and VL muscle oxygenation (near-infrared spectroscopy) were monitored continuously. RESULTS: Sprint time, contact time and total stride duration increased from the first to the last repetition (+17.4, +20.0 and +16.6 %; all P < 0.05), while flight time and stride length remained constant. Stride frequency (-13.9 %; P < 0.001) and vertical stiffness decreased (-27.2 %; P < 0.001) across trials. Root mean square EMG activities of RF and BF (-18.7 and -18.1 %; P < 0.01 and 0.001, respectively), but not VL (-1.2 %; P > 0.05), decreased over sprint repetitions and were correlated with the increase in running time (r = -0.82 and -0.90; both P < 0.05). Together with a better maintenance of RF and BF muscles activation levels over sprint repetitions, players with a better repeated-sprint performance (lower cumulated times) also displayed faster muscle de- (during sprints) and re-oxygenation (during recovery) rates (r = -0.74 and -0.84; P < 0.05 and 0.01, respectively). CONCLUSION: The repeated anaerobic sprint test leads to substantial alterations in stride mechanics and leg-spring behaviour. Our results also strengthen the link between repeated-sprint ability and the change in neuromuscular activation as well as in muscle de- and re-oxygenation rates.
Resumo:
Among existing fungal pathogens, Candida glabrata is outstanding in its capacity to rapidly develop resistance to currently used antifungal agents. Resistance to the class of azoles, which are still widely used agents, varies in proportion (from 5 to 20%) depending on geographical area. Moreover, resistance to the class of echinocandins, which was introduced in the late 1990s, is rising in several institutions. The recent emergence of isolates with acquired resistance to both classes of agents is a major concern since alternative therapeutic options are scarce. Although considered less pathogenic than C. albicans, C. glabrata has still evolved specific virulence traits enabling its survival and propagation in colonized and infected hosts. Development of drug resistance is usually associated with fitness costs, and this notion is documented across several microbial species. Interestingly, azole resistance in C. glabrata has revealed the opposite. Experimental models of infection showed enhanced virulence of azole-resistant isolates. Moreover, azole resistance could be associated with specific changes in adherence properties to epithelial cells or innate immunity cells (macrophages), both of which contribute to virulence changes. Here we will summarize the current knowledge on C. glabrata drug resistance and also discuss the consequences of drug resistance acquisition on the balance between C. glabrata and its hosts.
Resumo:
Climate change affects the rate of insect invasions as well as the abundance, distribution and impacts of such invasions on a global scale. Among the principal analytical approaches to predicting and understanding future impacts of biological invasions are Species Distribution Models (SDMs), typically in the form of correlative Ecological Niche Models (ENMs). An underlying assumption of ENMs is that species-environment relationships remain preserved during extrapolations in space and time, although this is widely criticised. The semi-mechanistic modelling platform, CLIMEX, employs a top-down approach using species ecophysiological traits and is able to avoid some of the issues of extrapolation, making it highly applicable to investigating biological invasions in the context of climate change. The tephritid fruit flies (Diptera: Tephritidae) comprise some of the most successful invasive species and serious economic pests around the world. Here we project 12 tephritid species CLIMEX models into future climate scenarios to examine overall patterns of climate suitability and forecast potential distributional changes for this group. We further compare the aggregate response of the group against species-specific responses. We then consider additional drivers of biological invasions to examine how invasion potential is influenced by climate, fruit production and trade indices. Considering the group of tephritid species examined here, climate change is predicted to decrease global climate suitability and to shift the cumulative distribution poleward. However, when examining species-level patterns, the predominant directionality of range shifts for 11 of the 12 species is eastward. Most notably, management will need to consider regional changes in fruit fly species invasion potential where high fruit production, trade indices and predicted distributions of these flies overlap.