121 resultados para Radiotherapy treatment
Resumo:
BACKGROUND: In a previous randomised EORTC study on adjuvant dibromodulcitol (DBD) and bichloroethylnitrosourea (BCNU) in adults with glioblastoma multiforme (GBM) and anaplastic astrocytoma (AA), a clinically significant trend towards a longer overall survival (OS) and a progression-free survival (PFS) was observed in the subgroup of AA. The aim of the present study was to test this adjuvant regimen in a larger number of AA patients. METHODS: Continuation of the previous phase III trial for newly diagnosed AA according to the local pathologist. Patients were randomised to either radiotherapy only or to radiotherapy in combination with BCNU on day 2 and weekly DBD, followed by adjuvant DBD and BCNU in cycles of six weeks for a maximum total treatment duration of one year. OS was the primary end-point. RESULTS: Patients (193 ) with newly diagnosed AA according to local pathological assessment were randomised to radiotherapy (RT) alone (n=99), or to RT plus DBD/BCNU (n=94); 12 patients were considered not eligible. At central pathology review, over half (53%) of the locally diagnosed AA cases could not be confirmed. On intent-to-treat analysis, no statistically significant differences in OS (p=0.111) and PFS (p=0.087) were observed, median OS after RT was only 23.9 months 95% confidence interval (CI), [18.4-34.0] after RT plus DBD/BCNU 27.3 months 95% CI [21.4-46.8]. CONCLUSION: No statistically significant improvement in survival was observed after BCNU/DBD adjuvant chemotherapy in AA patients. The trend towards improved survival is consistent with previous reports. Central pathology review of grade 3 tumours remains crucial.
Resumo:
INTRODUCTION: This trial randomly assessed short-term adjuvant hormonal therapy added to radiotherapy (RT) for intermediate- and high-risk (UICC 1997 cT2a or cT1b-c with high PSA or Gleason score) localised prostate cancer. We report acute toxicity (CTCAE v2) assessed weekly during RT in relation to radiation parameters. PATIENTS AND METHODS: Centres selected the RT dose (70, 74 or 78Gy) and RT technique. Statistical significance is at 0.05. RESULTS: Of 791 patients, 652 received 3D-CRT (70Gy: 195, 74Gy: 376, 78Gy: 81) and 139 received IMRT (74Gy: 28, 78Gy: 111). During RT, grade 3 gastrointestinal (GI) and genitourinary (GU) toxicities were reported by 7 (0.8%) and 50 (6.3%) patients, respectively. No grade 4 was reported. The risk of grade 2 GI toxicity increased significantly with increasing D50%-rectum (p=0.004) and that of grade 2 GU toxicity correlated only to Dmax-bladder (p=0.051). 3D-RT technique, increasing total dose and V95% >400 cc increased D50% and Dmax. One month after RT, only 14 patients (1.8%) reported grade 3 toxicity. AST did not seem to influence the risk of GU or GI acute toxicity. CONCLUSION: RT up to 78Gy was well tolerated. Dmax-bladder and D50%-rectum influenced the risk of grade 2 GU toxicity and GI toxicity, respectively. Both were lower with IMRT but remained high for an irradiated RT volume>400 cc for 3D-RT and for a dose of 78Gy. Hormonal treatment did not influence acute toxicity.
Resumo:
PURPOSE: Patients with locally advanced rectal carcinoma are at risk for both local recurrence and distant metastases. We demonstrated the efficacy of preoperative hyperfractionated accelerated radiotherapy (HART). In this Phase I trial, we aimed at introducing chemotherapy early in the treatment course with both intrinsic antitumor activity and a radiosensitizer effect. METHODS AND MATERIALS: Twenty-eight patients (19 males; median age 63, range 28-75) with advanced rectal carcinoma (cT3: 24; cT4: 4; cN+: 12; M1: 5) were enrolled, including 8 patients treated at the maximally tolerated dose. Escalating doses of CPT-11 (30-105 mg/m(2)/week) were given on Days 1, 8, and 15, and concomitant HART (41.6 Gy, 1.6 Gy bid x 13 days) started on Day 8. Surgery was to be performed within 1 week after the end of radiochemotherapy. RESULTS: Twenty-six patients completed all preoperative radiochemotherapy as scheduled; all patients underwent surgery. Dose-limiting toxicity was diarrhea Grade 3 occurring at dose level 6 (105 mg/m(2)). Hematotoxicity was mild, with only 1 patient experiencing Grade 3 neutropenia. Postoperative complications (30 days) occurred in 7 patients, with an anastomotic leak rate of 22%. CONCLUSIONS: The recommended Phase II dose of CPT-11 in this setting is 90 mg/m(2)/week. Further Phase II exploration at this dose is warranted.
Resumo:
BACKGROUND: Most patients with glioblastoma are older than 60 years, but treatment guidelines are based on trials in patients aged only up to 70 years. We did a randomised trial to assess the optimum palliative treatment in patients aged 60 years and older with glioblastoma. METHODS: Patients with newly diagnosed glioblastoma were recruited from Austria, Denmark, France, Norway, Sweden, Switzerland, and Turkey. They were assigned by a computer-generated randomisation schedule, stratified by centre, to receive temozolomide (200 mg/m(2) on days 1-5 of every 28 days for up to six cycles), hypofractionated radiotherapy (34·0 Gy administered in 3·4 Gy fractions over 2 weeks), or standard radiotherapy (60·0 Gy administered in 2·0 Gy fractions over 6 weeks). Patients and study staff were aware of treatment assignment. The primary endpoint was overall survival. Analyses were done by intention to treat. This trial is registered, number ISRCTN81470623. FINDINGS: 342 patients were enrolled, of whom 291 were randomised across three treatment groups (temozolomide n=93, hypofractionated radiotherapy n=98, standard radiotherapy n=100) and 51 of whom were randomised across only two groups (temozolomide n=26, hypofractionated radiotherapy n=25). In the three-group randomisation, in comparison with standard radiotherapy, median overall survival was significantly longer with temozolomide (8·3 months [95% CI 7·1-9·5; n=93] vs 6·0 months [95% CI 5·1-6·8; n=100], hazard ratio [HR] 0·70; 95% CI 0·52-0·93, p=0·01), but not with hypofractionated radiotherapy (7·5 months [6·5-8·6; n=98], HR 0·85 [0·64-1·12], p=0·24). For all patients who received temozolomide or hypofractionated radiotherapy (n=242) overall survival was similar (8·4 months [7·3-9·4; n=119] vs 7·4 months [6·4-8·4; n=123]; HR 0·82, 95% CI 0·63-1·06; p=0·12). For age older than 70 years, survival was better with temozolomide and with hypofractionated radiotherapy than with standard radiotherapy (HR for temozolomide vs standard radiotherapy 0·35 [0·21-0·56], p<0·0001; HR for hypofractionated vs standard radiotherapy 0·59 [95% CI 0·37-0·93], p=0·02). Patients treated with temozolomide who had tumour MGMT promoter methylation had significantly longer survival than those without MGMT promoter methylation (9·7 months [95% CI 8·0-11·4] vs 6·8 months [5·9-7·7]; HR 0·56 [95% CI 0·34-0·93], p=0·02), but no difference was noted between those with methylated and unmethylated MGMT promoter treated with radiotherapy (HR 0·97 [95% CI 0·69-1·38]; p=0·81). As expected, the most common grade 3-4 adverse events in the temozolomide group were neutropenia (n=12) and thrombocytopenia (n=18). Grade 3-5 infections in all randomisation groups were reported in 18 patients. Two patients had fatal infections (one in the temozolomide group and one in the standard radiotherapy group) and one in the temozolomide group with grade 2 thrombocytopenia died from complications after surgery for a gastrointestinal bleed. INTERPRETATION: Standard radiotherapy was associated with poor outcomes, especially in patients older than 70 years. Both temozolomide and hypofractionated radiotherapy should be considered as standard treatment options in elderly patients with glioblastoma. MGMT promoter methylation status might be a useful predictive marker for benefit from temozolomide. FUNDING: Merck, Lion's Cancer Research Foundation, University of Umeå, and the Swedish Cancer Society.
Resumo:
PURPOSE: Effective cancer treatment generally requires combination therapy. The combination of external beam therapy (XRT) with radiopharmaceutical therapy (RPT) requires accurate three-dimensional dose calculations to avoid toxicity and evaluate efficacy. We have developed and tested a treatment planning method, using the patient-specific three-dimensional dosimetry package 3D-RD, for sequentially combined RPT/XRT therapy designed to limit toxicity to organs at risk. METHODS AND MATERIALS: The biologic effective dose (BED) was used to translate voxelized RPT absorbed dose (D(RPT)) values into a normalized total dose (or equivalent 2-Gy-fraction XRT absorbed dose), NTD(RPT) map. The BED was calculated numerically using an algorithmic approach, which enabled a more accurate calculation of BED and NTD(RPT). A treatment plan from the combined Samarium-153 and external beam was designed that would deliver a tumoricidal dose while delivering no more than 50 Gy of NTD(sum) to the spinal cord of a patient with a paraspinal tumor. RESULTS: The average voxel NTD(RPT) to tumor from RPT was 22.6 Gy (range, 1-85 Gy); the maximum spinal cord voxel NTD(RPT) from RPT was 6.8 Gy. The combined therapy NTD(sum) to tumor was 71.5 Gy (range, 40-135 Gy) for a maximum voxel spinal cord NTD(sum) equal to the maximum tolerated dose of 50 Gy. CONCLUSIONS: A method that enables real-time treatment planning of combined RPT-XRT has been developed. By implementing a more generalized conversion between the dose values from the two modalities and an activity-based treatment of partial volume effects, the reliability of combination therapy treatment planning has been expanded.
Resumo:
Background We previously reported the results of a phase II study for patients with newly diagnosed primary central nervous system lymphoma treated with autologous peripheral blood stem-cell transplantation (aPBSCT) and response-adapted whole-brain radiotherapy (WBRT). Now, we update the initial results. Patients and methods From 1999 to 2004, 23 patients received high-dose methotrexate. In case of at least partial remission, high-dose busulfan/thiotepa (HD-BuTT) followed by aPBSCT was carried out. Patients refractory to induction or without complete remission after HD-BuTT received WBRT. Eight patients still alive in 2011 were contacted and Mini-Mental State Examination (MMSE) and the European Organisation for Research and Treatment of Cancer quality-of-life questionnaire (QLQ)-C30 were carried out. Results Of eight patients still alive, median follow-up is 116.9 months. Only one of nine irradiated patients is still alive with a severe neurologic deficit. In seven of eight patients treated with HD-BuTT, health condition and quality of life are excellent. MMSE and QLQ-C30 showed remarkably good results in patients who did not receive WBRT. All of them have a Karnofsky score of 90%-100%. Conclusions Follow-up shows an overall survival of 35%. In six of seven patients where WBRT could be avoided, no long-term neurotoxicity has been observed and all patients have an excellent quality of life.
Resumo:
PURPOSE: The purpose of this study was to analyze prognosis and treatment results for seminoma arising in corrected and uncorrected inguinal cryptorchidism (SCIC and SUIC). METHODS AND MATERIALS: We reviewed 66 patients with inguinal seminomas between June 1958 and December 1991 at the Cancer Hospital and Institute of Chinese Academy of Medical Sciences. Of these patients, 23 had prior orchiopexy and 43 presented with an inguinal form of cryptorchidism. At presentation, 17 of 66 (26%) patients had nodal metastases. This nodal involvement was 30% (7 of 23) for SCIC and 23% (10 of 43) for SUIC, respectively. These numbers are comparable with those in a series of patients treated for scrotal seminoma at our institution (26% vs. 20%). However, 3 of 23 (13%) patients who had prior orchiopexy presented with inguinal nodal metastasis as compared with 0 of 43 patients with SUIC or 4 of 237 patients with scrotal seminoma (p < .05). There were 49 stage I, 5 stage IIA, 8 stage IIB, 3 stage III, and 1 stage IV patients. All patients underwent radical orchiectomy and received further radiotherapy, chemotherapy, or both. Patients with stage I and stage II disease were treated primarily with radiotherapy, whereas patients with stage III and IV disease were treated with chemotherapy. RESULTS: The overall and disease-free survival at 5 and 10 years was 94% and 92%, 89% and 87%, respectively. The overall 5- and 10-year survival by stage was 100% and 100% for stage I, and 77% and 68% for stage II, respectively (p < .05). There was no significant difference in survival between SUIC and SCIC (93% vs. 96% at 5 years). Four patients developed relapse. Two of these four patients experienced relapse at the inguinal area, due to a marginal miss. Three of four patients with relapse were successfully salvaged, and one died of disease. CONCLUSION: Our results indicate that prognosis for inguinal seminoma is excellent and similar to that of scrotal seminoma. Postorchiectomy radiotherapy can be considered as the standard treatment for stage I and IIA inguinal seminoma. We recommend routinely including the para-aortic and ipsilateral pelvic nodes.
Resumo:
PURPOSE: Evidence has accumulated in recent years suggestive of a genetic basis for a susceptibility to the development of radiation injury after cancer radiotherapy. The purpose of this study was to assess whether patients with severe radiation-induced sequelae (RIS; i.e., National Cancer Institute/CTCv3.0 grade, > or =3) display both a low capacity of radiation-induced CD8 lymphocyte apoptosis (RILA) in vitro and possess certain single nucleotide polymorphisms (SNP) located in candidate genes associated with the response of cells to radiation. EXPERIMENTAL DESIGN: DNA was isolated from blood samples obtained from patients (n = 399) included in the Swiss prospective study evaluating the predictive effect of in vitro RILA and RIS. SNPs in the ATM, SOD2, XRCC1, XRCC3, TGFB1, and RAD21 genes were screened in patients who experienced severe RIS (group A, n = 16) and control subjects who did not manifest any evidence of RIS (group B, n = 18). RESULTS: Overall, 13 and 21 patients were found to possess a total of <4 and > or =4 SNPs in the candidate genes. The median (range) RILA in group A was 9.4% (5.3-16.5) and 94% (95% confidence interval, 70-100) of the patients (15 of 16) had > or =4 SNPs. In group B, median (range) RILA was 25.7% (20.2-43.2) and 33% (95% confidence interval, 13-59) of patients (6 of 18) had > or =4 SNPs (P < 0.001). CONCLUSIONS: The results of this study suggest that patients with severe RIS possess 4 or more SNPs in candidate genes and low radiation-induced CD8 lymphocyte apoptosis in vitro.
Resumo:
PURPOSE/OBJECTIVE(S): To analyze the long-term outcome of treatment with concomitant cisplatin and hyperfractionated radiotherapy in locally advanced head and neck cancer compared with hyperfractionated radiotherapy alone. MATERIALS/METHODS: From July 1994 to July 2000 a total of 224 patients with squamous cell carcinoma of the head and neck were randomized to either hyperfractionated radiotherapy (median dose 74.4 Gy; 1.2 Gy twice daily) or the same radiotherapy combined with two cycles of concomitant cisplatin (20mg/m2 for 5 consecutive days of weeks 1 and 5). The primary endpoint was time to any treatment failure; secondary endpoints were locoregional failure, metastatic failure, overall survival, and late toxicity assessed according to RTOG criteria. The trial was registered at the National Institutes of Health (www.clinicaltrials.gov; identifier number: NCT00002654). RESULTS: Median follow-up was 9.5 years (range, 0.1 - 15.4 years). Median time to any treatment failure was not significantly different between treatment arms (p = 0.19). Locoregional control (p\0.05), distant metastasis-free survival (p = 0.02) and cancer specific survival (p = 0.03) were significantly improved in the combined treatment arm, with no difference in late toxicity between treatment arms. However, overall survival was not significantly different (p = 0.19). CONCLUSIONS: After long-term follow-up combined treatment with cisplatin and hyperfractionated, radiotherapy maintained an improved locoregional control, distant metastasis-free survival, and cancer specific survival as compared to hyperfractionated radiotherapy alone with no difference in late toxicity.
Resumo:
PURPOSE: The European Organisation for Research and Treatment of Cancer and National Cancer Institute of Canada trial on temozolomide (TMZ) and radiotherapy (RT) in glioblastoma (GBM) has demonstrated that the combination of TMZ and RT conferred a significant and meaningful survival advantage compared with RT alone. We evaluated in this trial whether the recursive partitioning analysis (RPA) retains its overall prognostic value and what the benefit of the combined modality is in each RPA class. PATIENTS AND METHODS: Five hundred seventy-three patients with newly diagnosed GBM were randomly assigned to standard postoperative RT or to the same RT with concomitant TMZ followed by adjuvant TMZ. The primary end point was overall survival. The European Organisation for Research and Treatment of Cancer RPA used accounts for age, WHO performance status, extent of surgery, and the Mini-Mental Status Examination. RESULTS: Overall survival was statistically different among RPA classes III, IV, and V, with median survival times of 17, 15, and 10 months, respectively, and 2-year survival rates of 32%, 19%, and 11%, respectively (P < .0001). Survival with combined TMZ/RT was higher in RPA class III, with 21 months median survival time and a 43% 2-year survival rate, versus 15 months and 20% for RT alone (P = .006). In RPA class IV, the survival advantage remained significant, with median survival times of 16 v 13 months, respectively, and 2-year survival rates of 28% v 11%, respectively (P = .0001). In RPA class V, however, the survival advantage of RT/TMZ was of borderline significance (P = .054). CONCLUSION: RPA retains its prognostic significance overall as well as in patients receiving RT with or without TMZ for newly diagnosed GBM, particularly in classes III and IV.
Resumo:
BACKGROUND: Letrozole radiosensitises breast cancer cells in vitro. In clinical settings, no data exist for the combination of letrozole and radiotherapy. We assessed concurrent and sequential radiotherapy and letrozole in the adjuvant setting. METHODS: This phase 2 randomised trial was undertaken in two centres in France and one in Switzerland between Jan 12, 2005, and Feb 21, 2007. 150 postmenopausal women with early-stage breast cancer were randomly assigned after conserving surgery to either concurrent radiotherapy and letrozole (n=75) or sequential radiotherapy and letrozole (n=75). Randomisation was open label with a minimisation technique, stratified by investigational centres, chemotherapy (yes vs no), radiation boost (yes vs no), and value of radiation-induced lymphocyte apoptosis (< or = 16% vs >16%). Whole breast was irradiated to a total dose of 50 Gy in 25 fractions over 5 weeks. In the case of supraclavicular and internal mammary node irradiation, the dose was 44-50 Gy. Letrozole was administered orally once daily at a dose of 2.5 mg for 5 years (beginning 3 weeks pre-radiotherapy in the concomitant group, and 3 weeks post-radiotherapy in the sequential group). The primary endpoint was the occurrence of acute (during and within 6 weeks of radiotherapy) and late (within 2 years) radiation-induced grade 2 or worse toxic effects of the skin. Analyses were by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00208273. FINDINGS: All patients were analysed apart from one in the concurrent group who withdrew consent before any treatment. During radiotherapy and within the first 12 weeks after radiotherapy, 31 patients in the concurrent group and 31 in the sequential group had any grade 2 or worse skin-related toxicity. The most common skin-related adverse event was dermatitis: four patients in the concurrent group and six in the sequential group had grade 3 acute skin dermatitis during radiotherapy. At a median follow-up of 26 months (range 3-40), two patients in each group had grade 2 or worse late effects (both radiation-induced subcutaneous fibrosis). INTERPRETATION: Letrozole can be safely delivered shortly after surgery and concomitantly with radiotherapy. Long-term follow-up is needed to investigate cardiac side-effects and cancer-specific outcomes. FUNDING: Novartis Oncology France.
Resumo:
Purpose/Objective(s): Letrozole radiosensitizes breast cancer cells in vitro. In clinical settings, no data exist for the combination of letrozole and radiotherapy. We assessed concurrent and sequential radiotherapy and letrozole in the adjuvant setting.Materials/Methods: The present study is registered with ClinicalTrials.gov, number NCT00208273. This Phase 2 randomized trial was undertaken in two centers in France and one in Switzerland between January 12, 2005, and February 21, 2007. One hundred fifty postmenopausal women with early-stage breast cancer were randomly assigned after conserving surgery to either concurrent radiotherapy and letrozole (n = 75) or sequential radiotherapy and letrozole (n = 75). Randomization was open label with a minimization technique, stratified by investigational centers, chemotherapy (yes vs. no), radiation boost (yes vs. no), and value of radiation-induced lymphocyte apoptosis (#16% vs. .16%). The whole breast was irradiated to a total dose of 50 Gy in 25 fractions over 5 weeks. In the case of supraclavicular and internal mammary node irradiation, the dose was 44 - 50 Gy. Letrozole was administered orally once daily at a dose of 2 - 5 mg for 5 years (beginning 3 weeks pre-radiotherapy in the concomitant group, and 3 weeks postradiotherapy in the sequential group). The primary endpoint was the occurrence of acute (during and within 6 weeks of radiotherapy) and late (within 2 years) radiation-induced Grade 2 or worse toxic effects of the skin and lung (functional pulmonary test and lung CT-scan). Analyses were by intention-to-treat. The long-term follow-up after 2 years was only performed in Montpellier (n = 121) and evaluated skin toxicity (clinical examination every 6 months), lung fibrosis (one CT-scan yearly), cosmetic outcome.Results: All patients were analyzed apart from 1 in the concurrent group who withdrew consent before any treatment.Within the first 2 years (n = 149), no lung toxicity was identified by CT scan and no modification from baseline was noted by the lung diffusion capacity test. Two patients in each group had Grade 2 or worse late effects (both radiation-induced subcutaneous fibrosis [RISF]). After 2 years (n = 121), and with a median follow-up of 50 months (38-62), 2 patients (1 in each arm) presented a Grade 3 RISF. No lung toxicity was identified by CT scan. Cosmetic results (photographies) and quality of life was good to excellent. All patients who had Grade 3 subcutaneous fibrosis had an RILA value of 16% or less, irrespective of the sequence with letrozole.Conclusions:With long-term follow-up, letrozole can be safely delivered shortly after surgery and concomitantly with radiotherapy.
Resumo:
Introduction: EORTC trial 22991 randomly assessed the addition of concomitant and adjuvant short-term hormonal therapy to curative conformal/intensity-modulated radiotherapy (RT) for intermediate risk localized prostate cancer. We report the acute toxicity (assessed weekly during RT) for the organs at risk (genito-urinary (GU) and gastro-intestinal (GI)) in relation to radiation parameters. Material and Methods: Eligibility criteria were age _80 years, PSA _ 50 ng/ml, N0M0 and either tumour stage cT2a (1997 UICC TNM) or cT1b-c combined with PSA_10 ng/ml and/or Gleason score _7. We report toxicity for all eligible patients who received the planned RT with documented acute toxicity (CTCAEv.2) and RT-quality assurance parameters. The RT dose (70 Gy, 74 Gy or 78 Gy) and technique (3DCRT vs IRMT) were per institution choice, the randomization was stratified for institution. Statistical significance was set at 0.05. (ClinicalTrials.gov: NCT00021450) Results: Of 819 randomized patients, 28 were excluded from the analysis (3 with <60 Gy RT, 25 with missing information). Of the 791 analysed patients, 652 (82.4%) were treated with 3D-CRT, 139 with IMRT. In the 3DCRT group, 195 patients (29.9%) were treated with a total prescribed dose of 70 Gy; 376 (57.7%) with 74 Gy and 81 (12.4%) with 78 Gy. In the IMRT group, 28 (20.1%) were treated to a total dose of 74 Gy and 111 (79.9%) with 78 Gy. Overall, only 7 of 791 patients (0.9%) had grade 3 GI toxicity during RT: diarrhea (N = 6), rectal bleeding (N = 1) and proctitis (N = 1). Fifty patients (6.3%) had grade 3 GU toxicity: urinary frequency (N = 38, 4.6%), dysuria (N = 14, 1.7%), urinary retention (N = 11, 1.3%), urinary incontinence (N = 2) and hematuria (N = 1). No grade 4 toxicity was reported. Hormonal treatment did not influence the risk of side effects (p>0.05). The risk of grade _2 GI toxicity significantly correlated to D50%-rectum (p = 0.004) with a cut-of value of 44 Gy. The risk of grade _2 GU toxicity was moderately affected by Dmax-bladder (p = 0.051). Overall, only 14 patients (1.8%) had residual grade 3 toxicities one month after RT. Conclusion: 3D-CRT and IMRT up to 78 Gy is well tolerated. Dmaxbladder and D50%-rectum were related to the risk of grade_2 GU and GI toxicity, respectively. IMRT lowered D50% rectum and Dmax-bladder. An irradiated volume >400 cc for 3D-RT and a dose of 78 Gy, even for IMRT, negatively affected those parameters and increased the risk for toxicity.
Resumo:
The aim of radiotherapy is to deliver enough radiation to the tumor in order to achieve maximum tumour control in the irradiated volume with as few serious complications as possible with an irradiation dose as low as possible to normal tissue. The quality of radiotherapy is essential for optimal treatment and quality control is to reduce the bias in clinical trials avoiding possible major deviations. The assurance and quality control programs have been developed in large european (EORTC, GORTEC) and american cooperative groups (RTOG) of radiation oncology since the 1980s. We insist here on the importance of quality assurance in radiotherapy and the current status in this domain and the criteria for quality control especially for current clinical trials within GORTEC are discussed here.
Resumo:
The implementation of new techniques of imaging in the daily practice of the radiation oncologist is a major advance in these last 10 years. This allows optimizing the therapeutic intervals and locoregional control of the disease while limiting side effects. Among them, positron emission tomography (PET) offers an opportunity to the clinician to obtain data relative to the tumoral biological mechanisms, while benefiting from the morphological images of the computed tomography (CT) scan. Recently hybrid PET/CT has been developed and numerous studies aimed at optimizing its use in the planning, the evaluation of the treatment response and the prognostic value. The choice of the radiotracer (according to the type of cancer and to the studied biological mechanism) and the various methods of tumoral delineation, require a regular update to optimize the practices. We propose throughout this article, an exhaustive review of the published researches (and in process of publication) until December 2011, as user guide of PET/CT in all the aspects of the modern radiotherapy (from the diagnosis to the follow-up): biopsy guiding, optimization of treatment planning and dosimetry, evaluation of tumor response and prognostic value, follow-up and early detection of recurrence versus tumoral necrosis. In a didactic purpose, each of these aspects is approached by primary tumoral location, and illustrated with representative iconographic examples. The current contribution of PET/CT and its perspectives of development are described to offer to the radiation oncologist a clear and up to date reading in this expanding domain.