237 resultados para Quantitative micrographic parameters
Resumo:
A newly identified cytokine, osteoprotegerin (OPG) appears to be involved in the regulation of bone remodeling. In vitro studies suggest that OPG, a soluble member of the TNF receptor family of proteins, inhibits osteoclastogenesis by interrupting the intercellular signaling between osteoblastic stromal cells and osteoclast progenitors. As patients with chronic renal failure (CRF) often have renal osteodystrophy (ROD), we investigated the role of osteoprotegerin (OPG) in ROD, and investigated whether there was any relationship between serum OPG, intact parathyroid (PTH) (iPTH), vitamin D, and trabecular bone. Serum OPG combined with iPTH might be a useful tool in the noninvasive diagnosis of ROD, at least in cases in which the range of PTH values compromises reliable diagnosis. Thirty-six patients on maintenance hemodiafiltration (HDF) and a control group of 36 age and sex matched healthy subjects with no known metabolic bone disease were studied. The following assays were made on serum: iPTH, osteocalcin (BGP), bone alkaline phosphatase, 25(OH)-cholecalciferol, calcium, phosphate, OPG, IGF-1, estradiol, and free testosterone. Serum Ca++, P, B-ALP, BGP, IGF-1, iPTH, and OPG levels were significantly higher in HDF patients than in controls, while DXA measurements and quantitative ultrasound (QUS) parameters were significantly lower. On grouping patients according to their mean OPG levels, we observed significantly lower serum IGF-1, vitamin D3 concentrations, and lumbar spine and hip bone mineral density in the high OPG groups. No correlation was found between OPG and bone turnover markers, whereas a negative correlation was found between serum OPG and IGF-1 levels (r=-0.64, p=0.032). Serum iPTH concentrations were positively correlated with bone alkaline phosphatase (B-ALP) (r=0.69, p=0.038) and BGP (r=0.92, p<0.001). The findings made suggest that an increase in OPG levels may be a compensatory response to elevated bone loss. The low bone mineral density (BMD) levels found in the high OPG group might have been due to the significant decrease in serum IGF-1 and vitamin D3 observed. In conclusion, the findings made in the present study demonstrate that increased OPG in hemodiafiltration patients is only partly due to decreased renal clearance. As it may partly reflect a compensatory response to increased bone loss, this parameter might be helpful in the identification of patients with a marked reduction in trabecular BMD.
Resumo:
OBJECTIVES: Within a strong interdisciplinary framework, improvement in the quality of care for children with autistic spectrum disorders through a 2 year implementation program of Practice Parameters, aimed principally at improving early detection and intervention. METHOD: We developed Practice Parameters (PPs) for Pervasive Developmental Disorders and circulated the PPs to all child and adolescent psychiatrists practicing in the region. RESULTS: PP development and parallel information strategies resulted in a significant decrease of 1.5 years in the mean-age-at-diagnosis. However, further analysis indicated that improvement was only transient. CONCLUSION: Despite the encouraging improvement in mean-age-at-diagnosis 2 years after PP implementation, other indicators showed a failure to maintain the improvements. A systematic screening program would be the most reliable method to reinforce the PPs.
Resumo:
The dentate gyrus is one of only two regions of the mammalian brain where substantial neurogenesis occurs postnatally. However, detailed quantitative information about the postnatal structural maturation of the primate dentate gyrus is meager. We performed design-based, stereological studies of neuron number and size, and volume of the dentate gyrus layers in rhesus macaque monkeys (Macaca mulatta) of different postnatal ages. We found that about 40% of the total number of granule cells observed in mature 5-10-year-old macaque monkeys are added to the granule cell layer postnatally; 25% of these neurons are added within the first three postnatal months. Accordingly, cell proliferation and neurogenesis within the dentate gyrus peak within the first 3 months after birth and remain at an intermediate level between 3 months and at least 1 year of age. Although granule cell bodies undergo their largest increase in size during the first year of life, cell size and the volume of the three layers of the dentate gyrus (i.e. the molecular, granule cell and polymorphic layers) continue to increase beyond 1 year of age. Moreover, the different layers of the dentate gyrus exhibit distinct volumetric changes during postnatal development. Finally, we observe significant levels of cell proliferation, neurogenesis and cell death in the context of an overall stable number of granule cells in mature 5-10-year-old monkeys. These data identify an extended developmental period during which neurogenesis might be modulated to significantly impact the structure and function of the dentate gyrus in adulthood.
Resumo:
AimAlthough habitat suitability maps derived from species distribution models (SDMs) are often assumed to highlight locations that can sustain healthy populations over time, the relationship between suitability scores and fitness parameters has rarely been tested thoroughly. LocationZackenberg Valley, north-east Greenland. MethodsUsing 14years of data (1997-2010) representing three wader species (dunlin Calidris alpina, sanderling Calidris alba and ruddy turnstone Arenaria interpres), we tested the relationships between modelled suitability and fitness parameters at nesting locations. ResultsAmong the three species examined, only the ruddy turnstone exhibited significant relationships between suitability and nest success, but over time rather than space. During years with extensive snow cover in the landscape, the nesting sites of ruddy turnstone occurred in different habitats than were typically used across years. Moreover, in years with extensive snow cover, the ruddy turnstone initiated nests later and suffered from higher egg predation rates. Main conclusionOur results suggest that SDMs derived from species occurrences that include years of low reproductive success may over-estimate the potential suitable habitat in the landscape. Whenever possible, variation in reproductive success should be considered when building models to inform species' response to environmental change. species' response to environmental change.
Resumo:
Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity and solution space, thus making it easier to investigate.
Resumo:
In this study, we quantitatively investigated the expression of beta-site amyloid precursor protein cleaving enzyme (BACE) in the entorhinohippocampal and frontal cortex of Alzheimer's disease (AD) and old control subjects. The semiquantitative estimation indicated that the intensity of BACE overall immunoreactivity did not differ significantly between AD and controls, but that a significantly stronger staining was observed in the hippocampal regions CA3-4 compared to other regions in both AD patients and controls. The quantitative estimation confirmed that the number of BACE-positive neuronal profiles was not significantly decreased in AD. However, some degeneration of BACE-positive profiles was attested by the colocalization of neurons expressing BACE and exhibiting neurofibrillary tangles (NFT), as well as by a decrease in the surface area of BACE-positive profiles. In addition, BACE immunocytochemical expression was observed in and around senile plaques (SP), as well as in reactive astrocytes. BACE-immunoreactive astrocytes were localized in the vicinity or close to the plaques and their number was significantly increased in AD entorhinal cortex. The higher amount of beta-amyloid SP and NFT in AD was not correlated with an increase in BACE immunoreactivity. Taken together, these data accent that AD progression does not require an increased neuronal BACE protein level, but suggest an active role of BACE in immunoreactive astrocytes. Moreover, the strong expression in controls and regions less vulnerable to AD puts forward the probable existence of alternate BACE functions.
Resumo:
During the Early Toarcian, major paleoenvironnemental and paleoceanographical changes occurred, leading to an oceanic anoxic event (OAE) and to a perturbation of the carbon isotope cycle. Although the standard biochronology of the Lower Jurassic is essentially based upon ammonites, in recent years biostratigraphy based on calcareous nannofossils and dinoflagellate cysts is increasingly used to date Jurassic rocks. However, the precise dating and correlation of the Early Toarcian OAE, and of the associated delta C-13 anomaly in different settings of the western Tethys, are still partly problematic, and it is still unclear whether these events are synchronous or not. In order to allow more accurate correlations of the organic rich levels recorded in the Lower Toarcian OAE, this account proposes a new biozonation based on a quantitative biochronology approach, the Unitary Associations (UA), applied to calcareous nannofossils. This study represents the first attempt to apply the UA method to Jurassic nannofossils. The study incorporates eighteen sections distributed across western Tethys and ranging from the Pliensbachian to Aalenian, comprising 1220 samples and 72 calcareous nannofossil taxa. The BioGraph [Savary, J., Guex, J., 1999. Discrete biochronological scales and unitary associations: description of the Biograph Computer program. Memoires de Geologie de Lausanne 34, 282 pp] and UA-Graph (Copyright Hammer O., Guex and Savary, 2002) softwares provide a discrete biochronological framework based upon multi-taxa concurrent range zones in the different sections. The optimized dataset generates nine UAs using the co-occurrences of 56 taxa. These UAs are grouped into six Unitary Association Zones (UA-Z), which constitute a robust biostratigraphic synthesis of all the observed or deduced biostratigraphic relationships between the analysed taxa. The UA zonation proposed here is compared to ``classic'' calcareous nannofossil biozonations, which are commonly used for the southern and the northern sides of Tethys. The biostratigraphic resolution of the UA-Zones varies from one nannofossil subzone or part of it to several subzones, and can be related to the pattern of calcareous nannoplankton originations and extinctions during the studied time interval. The Late Pliensbachian - Early Toarcian interval (corresponding to the UA-Z II) represents a major step in the Jurassic nannoplankton radiation. The recognized UA-Zones are also compared to the carbon isotopic negative excursion and TOC maximum in five sections of central Italy, Germany and England, with the aim of providing a more reliable correlation tool for the Early Toarcian OAE, and of the associated isotopic anomaly, between the southern and northern part of western Tethys. The results of this work show that the TOC maximum and delta C-13 negative excursion correspond to the upper part of the UA-Z II (i.e., UA 3) in the sections analysed. This suggests that the Early Toarcian OAE was a synchronous event within the western Tethys. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We improved, evaluated, and used Sanger sequencing for quantification of single nucleotide polymorphism (SNP) variants in transcripts and gDNA samples. This improved assay resulted in highly reproducible relative allele frequencies (e.g., for a heterozygous gDNA 50.0+/-1.4%, and for a missense mutation-bearing transcript 46.9+/-3.7%) with a lower detection limit of 3-9%. It provided excellent accuracy and linear correlation between expected and observed relative allele frequencies. This sequencing assay, which can also be used for the quantification of copy number variations (CNVs), methylations, mosaicisms, and DNA pools, enabled us to analyze transcripts of the FBN1 gene in fibroblasts and blood samples of patients with suspected Marfan syndrome not only qualitatively but also quantitatively. We report a total of 18 novel and 19 known FBN1 sequence variants leading to a premature termination codon (PTC), 26 of which we analyzed by quantitative sequencing both at gDNA and cDNA levels. The relative amounts of PTC-containing FBN1 transcripts in fresh and PAXgene-stabilized blood samples were significantly higher (33.0+/-3.9% to 80.0+/-7.2%) than those detected in affected fibroblasts with inhibition of nonsense-mediated mRNA decay (NMD) (11.0+/-2.1% to 25.0+/-1.8%), whereas in fibroblasts without NMD inhibition no mutant alleles could be detected. These results provide evidence for incomplete NMD in leukocytes and have particular importance for RNA-based analyses not only in FBN1 but also in other genes.
Resumo:
Les réponses immunitaires innées et adaptatives déclenchées par une infection virale chez l'humain sont classiquement décrites comme une succession d'événements communs à tous les virus- la réponse innée, caractérisés par la libération rapide de cytokines antivirales et des chémokines, recrutant monocytes, NK et lymphocytes Τ vers le site d'infection, suivis par l'activation de l'immunité adaptative. Notre compréhension de la dynamique de ces mécanismes dynamiques est limitée chez l'humain. En effet, il existe peu d'études portant sur la cinétique et l'analyse quantitative de la réponse Τ spécifique au virus, parallèlement aux aspects plus qualitatifs de cette réponse (cytokines sériques produites lors de différentes infections virales, notamment). Méthode: Nous avons étudiés trois groupes de patients tous recrutés au cours de la phase aiguë d'une infection par le virus de la dengue (28 patients), le virus influenza A (13 patients) et le virus de l'hépatite Β (HBV) (13 patients). Nous avons analysé le profil d'activation (CD38, HLA-DR) et de prolifération (Ki-67, Bcl-2) des lymphocytes Τ CD8+ (par cytométrie de flux), de façon longitudinale à différents timepoints (depuis le début des symptômes jusqu'à rémission totale) en quantifiant 15 cytokines et chémokines (par Luminex multiplex biométrie immunoassay) dans le sérum des patients infectés. Résultats: Nous avons comparé le profil des réponses innée et adaptative chez les 3 types d'infection virales; les patients infectés par l'HBV ont une fréquence élevée de CD8+ spécifiques activés et proliférant ainsi que des taux sériques élevés de TNF-α et d'IFN-γ. Les patients infectés par le virus de la dengue et par le virus Influenza présentent quant à eux une activation CD 8+ moins intense mais une forte expression de la réponse innée, marquée par une élévation des cytokines IFN-α, IFN-γ, et TNF-α. De plus, une particularité des patients infectés par le virus de la dengue est de présenter une élévation marquée des cytokines immunorégulatrices (IL-10, IL- 1RA). Conclusion: Ces résultats permettent de montrer que la réponse immunologique consécutive à une infections virale spécifique est caractérisée par sa propre signature, tant au niveau de la production de cytokines/chemokines que de la quantité des lymphocytes Τ CD+8+ spécifiques activés et proliférantes. Ce travail contribue ainsi à une meilleure compréhension de l'immunité antivirale chez les humains, grâce à la description de la cinétique et de la quantification des cellules Τ CD8+ activées et des taux de cytokines dans chaque infection étudiée. Abstract Knowledge of innate and adaptive immune parameters triggered by viral infections is limited but important for understanding disease pathogenesis. We performed a comparative longitudinal analysis of serum cytokines/chemokines and of virus-activated CD8 Τ cells population in patients with acute dengue, influenza A or HBV infections from onset to disease recovery. We observed that each viral infection is characterized by its own signature of cytokines/chemokines production and size of activated and proliferating CD8 Τ cell pool. This is, to our knowledge, the first comparative longitudinal study of the immune response in human subjects in three distinct viral infections.
Resumo:
PURPOSE: To compare the apparent diffusion coefficient (ADC) values of malignant liver lesions on diffusion-weighted MRI (DWI) before and after successful radiofrequency ablation (RF ablation). MATERIALS AND METHODS: Thirty-two patients with 43 malignant liver lesions (23/20: metastases/hepatocellular carcinomas (HCC)) underwent liver MRI (3.0T) before (<1month) and after RF ablation (at 1, 3 and 6months) using T2-, gadolinium-enhanced T1- and DWI-weighted MR sequences. Jointly, two radiologists prospectively measured ADCs for each lesion by means of two different regions of interest (ROIs), first including the whole lesion and secondly the area with the visibly most restricted diffusion (MRDA) on ADC map. Changes of ADCs were evaluated with ANOVA and Dunnett tests. RESULTS: Thirty-one patients were successfully treated, while one patient was excluded due to focal recurrence. In metastases (n=22), the ADC in the whole lesion and in MRDA showed an up-and-down evolution. In HCC (n=20), the evolution of ADC was more complex, but with significantly higher values (p=0.013) at 1 and 6months after RF ablation. CONCLUSION: The ADC values of malignant liver lesions successfully treated by RF ablation show a predictable evolution and may help radiologists to monitor tumor response after treatment.
Resumo:
Osteoporotic hip fractures increase dramatically with age and are responsible for considerable morbidity and mortality. Several treatments to prevent the occurrence of hip fracture have been validated in large randomized trials and the current challenge is to improve the identification of individuals at high risk of fracture who would benefit from therapeutic or preventive intervention. We have performed an exhaustive literature review on hip fracture predictors, focusing primarily on clinical risk factors, dual X-ray absorptiometry (DXA), quantitative ultrasound, and bone markers. This review is based on original articles and meta-analyses. We have selected studies that aim both to predict the risk of hip fracture and to discriminate individuals with or without fracture. We have included only postmenopausal women in our review. For studies involving both men and women, only results concerning women have been considered. Regarding clinical factors, only prospective studies have been taken into account. Predictive factors have been used as stand-alone tools to predict hip fracture or sequentially through successive selection processes or by combination into risk scores. There is still much debate as to whether or not the combination of these various parameters, as risk scores or as sequential or concurrent combinations, could help to better predict hip fracture. There are conflicting results on whether or not such combinations provide improvement over each method alone. Sequential combination of bone mineral density and ultrasound parameters might be cost-effective compared with DXA alone, because of fewer bone mineral density measurements. However, use of multiple techniques may increase costs. One problem that precludes comparison of most published studies is that they use either relative risk, or absolute risk, or sensitivity and specificity. The absolute risk of individuals given their risk factors and bone assessment results would be a more appropriate model for decision-making than relative risk. Currently, a group appointed by the World Health Organization and lead by Professor John Kanis is working on such a model. It will therefore be possible to further assess the best choice of threshold to optimize the number of women needed to screen for each country and each treatment.
Resumo:
This article describes the composition of fingermark residue as being a complex system with numerous compounds coming from different sources and evolving over time from the initial composition (corresponding to the composition right after deposition) to the aged composition (corresponding to the evolution of the initial composition over time). This complex system will additionally vary due to effects of numerous influence factors grouped in five different classes: the donor characteristics, the deposition conditions, the substrate nature, the environmental conditions and the applied enhancement techniques. The initial and aged compositions as well as the influence factors are thus considered in this article to provide a qualitative and quantitative review of all compounds identified in fingermark residue up to now. The analytical techniques used to obtain these data are also enumerated. This review highlights the fact that despite the numerous analytical processes that have already been proposed and tested to elucidate fingermark composition, advanced knowledge is still missing. Thus, there is a real need to conduct future research on the composition of fingermark residue, focusing particularly on quantitative measurements, aging kinetics and effects of influence factors. The results of future research are particularly important for advances in fingermark enhancement and dating technique developments.
Resumo:
We studied the noctule bat (Nyctalus noctula), in which the mitochondrial F(ST) is about 10 times that revealed by nuclear markers, to address two questions. We first verified whether random dispersal of one sex is compatible with highly contrasted mitochondrial and nuclear population structures. Using computer simulations, we then assessed the power of multilocus population differentiation tests when the expected population structure departs only slightly from panmixia. Using an island model with sex-specific demographic parameters, we found that random male dispersal is consistent with the population structure observed in the noctule. However, other parameter combinations are also compatible with the data. We computed the minimum sex bias in dispersal (at least 69% of the dispersing individuals are males), a result that would not be available if we had used more classical population genetic models. The power of multilocus population differentiation tests was unexpectedly high, the tests being significant in almost 100% of the replicates, although the observed population structure infered from nuclear markers was extremely low (F(ST) = 0.6%).