114 resultados para Probabilistic robotics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The success of combination antiretroviral therapy is limited by the evolutionary escape dynamics of HIV-1. We used Isotonic Conjunctive Bayesian Networks (I-CBNs), a class of probabilistic graphical models, to describe this process. We employed partial order constraints among viral resistance mutations, which give rise to a limited set of mutational pathways, and we modeled phenotypic drug resistance as monotonically increasing along any escape pathway. Using this model, the individualized genetic barrier (IGB) to each drug is derived as the probability of the virus not acquiring additional mutations that confer resistance. Drug-specific IGBs were combined to obtain the IGB to an entire regimen, which quantifies the virus' genetic potential for developing drug resistance under combination therapy. The IGB was tested as a predictor of therapeutic outcome using between 2,185 and 2,631 treatment change episodes of subtype B infected patients from the Swiss HIV Cohort Study Database, a large observational cohort. Using logistic regression, significant univariate predictors included most of the 18 drugs and single-drug IGBs, the IGB to the entire regimen, the expert rules-based genotypic susceptibility score (GSS), several individual mutations, and the peak viral load before treatment change. In the multivariate analysis, the only genotype-derived variables that remained significantly associated with virological success were GSS and, with 10-fold stronger association, IGB to regimen. When predicting suppression of viral load below 400 cps/ml, IGB outperformed GSS and also improved GSS-containing predictors significantly, but the difference was not significant for suppression below 50 cps/ml. Thus, the IGB to regimen is a novel data-derived predictor of treatment outcome that has potential to improve the interpretation of genotypic drug resistance tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Normal and abnormal brains can be segmented by registering the target image with an atlas. Here, an atlas is defined as the combination of an intensity image (template) and its segmented image (the atlas labels). After registering the atlas template and the target image, the atlas labels are propagated to the target image. We define this process as atlas-based segmentation. In recent years, researchers have investigated registration algorithms to match atlases to query subjects and also strategies for atlas construction. In this paper we present a review of the automated approaches for atlas-based segmentation of magnetic resonance brain images. We aim to point out the strengths and weaknesses of atlas-based methods and suggest new research directions. We use two different criteria to present the methods. First, we refer to the algorithms according to their atlas-based strategy: label propagation, multi-atlas methods, and probabilistic techniques. Subsequently, we classify the methods according to their medical target: the brain and its internal structures, tissue segmentation in healthy subjects, tissue segmentation in fetus, neonates and elderly subjects, and segmentation of damaged brains. A quantitative comparison of the results reported in the literature is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both, Bayesian networks and probabilistic evaluation are gaining more and more widespread use within many professional branches, including forensic science. Notwithstanding, they constitute subtle topics with definitional details that require careful study. While many sophisticated developments of probabilistic approaches to evaluation of forensic findings may readily be found in published literature, there remains a gap with respect to writings that focus on foundational aspects and on how these may be acquired by interested scientists new to these topics. This paper takes this as a starting point to report on the learning about Bayesian networks for likelihood ratio based, probabilistic inference procedures in a class of master students in forensic science. The presentation uses an example that relies on a casework scenario drawn from published literature, involving a questioned signature. A complicating aspect of that case study - proposed to students in a teaching scenario - is due to the need of considering multiple competing propositions, which is an outset that may not readily be approached within a likelihood ratio based framework without drawing attention to some additional technical details. Using generic Bayesian networks fragments from existing literature on the topic, course participants were able to track the probabilistic underpinnings of the proposed scenario correctly both in terms of likelihood ratios and of posterior probabilities. In addition, further study of the example by students allowed them to derive an alternative Bayesian network structure with a computational output that is equivalent to existing probabilistic solutions. This practical experience underlines the potential of Bayesian networks to support and clarify foundational principles of probabilistic procedures for forensic evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research reported in this series of article aimed at (1) automating the search of questioned ink specimens in ink reference collections and (2) at evaluating the strength of ink evidence in a transparent and balanced manner. These aims require that ink samples are analysed in an accurate and reproducible way and that they are compared in an objective and automated way. This latter requirement is due to the large number of comparisons that are necessary in both scenarios. A research programme was designed to (a) develop a standard methodology for analysing ink samples in a reproducible way, (b) comparing automatically and objectively ink samples and (c) evaluate the proposed methodology in forensic contexts. This report focuses on the last of the three stages of the research programme. The calibration and acquisition process and the mathematical comparison algorithms were described in previous papers [C. Neumann, P. Margot, New perspectives in the use of ink evidence in forensic science-Part I: Development of a quality assurance process for forensic ink analysis by HPTLC, Forensic Sci. Int. 185 (2009) 29-37; C. Neumann, P. Margot, New perspectives in the use of ink evidence in forensic science-Part II: Development and testing of mathematical algorithms for the automatic comparison of ink samples analysed by HPTLC, Forensic Sci. Int. 185 (2009) 38-50]. In this paper, the benefits and challenges of the proposed concepts are tested in two forensic contexts: (1) ink identification and (2) ink evidential value assessment. The results show that different algorithms are better suited for different tasks. This research shows that it is possible to build digital ink libraries using the most commonly used ink analytical technique, i.e. high-performance thin layer chromatography, despite its reputation of lacking reproducibility. More importantly, it is possible to assign evidential value to ink evidence in a transparent way using a probabilistic model. It is therefore possible to move away from the traditional subjective approach, which is entirely based on experts' opinion, and which is usually not very informative. While there is room for the improvement, this report demonstrates the significant gains obtained over the traditional subjective approach for the search of ink specimens in ink databases, and the interpretation of their evidential value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since 2000 and the commercialisation of the Da Vinci robotic system, indications for robotic surgery are rapidly increasing. Recent publications proved superior functional outcomes with equal oncologic safety in comparison to conventional open surgery. Its field of application may extend to the nasopharynx and skull base surgery. The preliminary results are encouraging. This article reviews the current literature on the role of transoral robotic surgery in head and neck cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MOTIVATION: The analysis of molecular coevolution provides information on the potential functional and structural implication of positions along DNA sequences, and several methods are available to identify coevolving positions using probabilistic or combinatorial approaches. The specific nucleotide or amino acid profile associated with the coevolution process is, however, not estimated, but only known profiles, such as the Watson-Crick constraint, are usually considered a priori in current measures of coevolution. RESULTS: Here, we propose a new probabilistic model, Coev, to identify coevolving positions and their associated profile in DNA sequences while incorporating the underlying phylogenetic relationships. The process of coevolution is modeled by a 16 × 16 instantaneous rate matrix that includes rates of transition as well as a profile of coevolution. We used simulated, empirical and illustrative data to evaluate our model and to compare it with a model of 'independent' evolution using Akaike Information Criterion. We showed that the Coev model is able to discriminate between coevolving and non-coevolving positions and provides better specificity and specificity than other available approaches. We further demonstrate that the identification of the profile of coevolution can shed new light on the process of dependent substitution during lineage evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Clinical staging is widespread in medicine - it informs prognosis, clinical course, and treatment, and assists individualized care. Staging places an individual on a probabilistic continuum of increasing potential disease severity, ranging from clinically at-risk or latency stage through first threshold episode of illness or recurrence, and, finally, to late or end-stage disease. The aim of the present paper was to examine and update the evidence regarding staging in bipolar disorder, and how this might inform targeted and individualized intervention approaches. METHODS: We provide a narrative review of the relevant information. RESULTS: In bipolar disorder, the validity of staging is informed by a range of findings that accompany illness progression, including neuroimaging data suggesting incremental volume loss, cognitive changes, and a declining likelihood of response to pharmacological and psychosocial treatments. Staging informs the adoption of a number of approaches, including the active promotion of both indicated prevention for at-risk individuals and early intervention strategies for newly diagnosed individuals, and the tailored implementation of treatments according to the stage of illness. CONCLUSIONS: The nature of bipolar disorder implies the presence of an active process of neuroprogression that is considered to be at least partly mediated by inflammation, oxidative stress, apoptosis, and changes in neurogenesis. It further supports the concept of neuroprotection, in that a diversity of agents have putative effects against these molecular targets. Clinically, staging suggests that the at-risk state or first episode is a period that requires particularly active and broad-based treatment, consistent with the hope that the temporal trajectory of the illness can be altered. Prompt treatment may be potentially neuroprotective and attenuate the neurostructural and neurocognitive changes that emerge with chronicity. Staging highlights the need for interventions at a service delivery level and implementing treatments at the earliest stage of illness possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"MotionMaker (TM)" is a stationary programmable test and training system for the lower limbs developed at the 'Ecole Polytechnique Federale de Lausanne' with the 'Fondation Suisse pour les Cybertheses'.. The system is composed of two robotic orthoses comprising motors and sensors, and a control unit managing the trans-cutaneous electrical muscle stimulation with real-time regulation. The control of the Functional Electrical Stimulation (FES) induced muscle force necessary to mimic natural exercise is ensured by the control unit which receives a continuous input from the position and force sensors mounted on the robot. First results with control subjects showed the feasibility of creating movements by such closed-loop controlled FES induced muscle contractions. To make exercising with the MotionMaker (TM) safe for clinical trials with Spinal Cord Injured (SCI) volunteers, several original safety features have been introduced. The MotionMaker (TM) is able to identify and manage the occurrence of spasms. Fatigue can also be detected and overfatigue during exercise prevented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of motor training using closed loop controlled Functional Electrical Stimulation (FES) on motor performance was studied in 5 spinal cord injured (SCI) volunteers. The subjects trained 2 to 3 times a week during 2 months on a newly developed rehabilitation robot (MotionMaker?). The FES induced muscle force could be adequately adjusted throughout the programmed exercises by the way of a closed loop control of the stimulation currents. The software of the MotionMaker? allowed spasms to be detected accurately and managed in a way to prevent any harm to the SCI persons. Subjects with incomplete SCI reported an increased proprioceptive awareness for motion and were able to achieve a better voluntary activation of their leg muscles during controlled FES. At the end of the training, the voluntary force of the 4 incomplete SCI patients was found increased by 388% on their most affected leg and by 193% on the other leg. Active mobilisation with controlled FES seems to be effective in improving motor function in SCI persons by increasing the sensory input to neuronal circuits involved in motor control as well as by increasing muscle strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model-machine learning (ML) residuals sequential simulations-MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. NIL algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract One of the most important issues in molecular biology is to understand regulatory mechanisms that control gene expression. Gene expression is often regulated by proteins, called transcription factors which bind to short (5 to 20 base pairs),degenerate segments of DNA. Experimental efforts towards understanding the sequence specificity of transcription factors is laborious and expensive, but can be substantially accelerated with the use of computational predictions. This thesis describes the use of algorithms and resources for transcriptionfactor binding site analysis in addressing quantitative modelling, where probabilitic models are built to represent binding properties of a transcription factor and can be used to find new functional binding sites in genomes. Initially, an open-access database(HTPSELEX) was created, holding high quality binding sequences for two eukaryotic families of transcription factors namely CTF/NF1 and LEFT/TCF. The binding sequences were elucidated using a recently described experimental procedure called HTP-SELEX, that allows generation of large number (> 1000) of binding sites using mass sequencing technology. For each HTP-SELEX experiments we also provide accurate primary experimental information about the protein material used, details of the wet lab protocol, an archive of sequencing trace files, and assembled clone sequences of binding sequences. The database also offers reasonably large SELEX libraries obtained with conventional low-throughput protocols.The database is available at http://wwwisrec.isb-sib.ch/htpselex/ and and ftp://ftp.isrec.isb-sib.ch/pub/databases/htpselex. The Expectation-Maximisation(EM) algorithm is one the frequently used methods to estimate probabilistic models to represent the sequence specificity of transcription factors. We present computer simulations in order to estimate the precision of EM estimated models as a function of data set parameters(like length of initial sequences, number of initial sequences, percentage of nonbinding sequences). We observed a remarkable robustness of the EM algorithm with regard to length of training sequences and the degree of contamination. The HTPSELEX database and the benchmarked results of the EM algorithm formed part of the foundation for the subsequent project, where a statistical framework called hidden Markov model has been developed to represent sequence specificity of the transcription factors CTF/NF1 and LEF1/TCF using the HTP-SELEX experiment data. The hidden Markov model framework is capable of both predicting and classifying CTF/NF1 and LEF1/TCF binding sites. A covariance analysis of the binding sites revealed non-independent base preferences at different nucleotide positions, providing insight into the binding mechanism. We next tested the LEF1/TCF model by computing binding scores for a set of LEF1/TCF binding sequences for which relative affinities were determined experimentally using non-linear regression. The predicted and experimentally determined binding affinities were in good correlation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Target identification for tractography studies requires solid anatomical knowledge validated by an extensive literature review across species for each seed structure to be studied. Manual literature review to identify targets for a given seed region is tedious and potentially subjective. Therefore, complementary approaches would be useful. We propose to use text-mining models to automatically suggest potential targets from the neuroscientific literature, full-text articles and abstracts, so that they can be used for anatomical connection studies and more specifically for tractography. We applied text-mining models to three structures: two well-studied structures, since validated deep brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and, the nucleus accumbens, an exploratory target for treating psychiatric disorders. We performed a systematic review of the literature to document the projections of the three selected structures and compared it with the targets proposed by text-mining models, both in rat and primate (including human). We ran probabilistic tractography on the nucleus accumbens and compared the output with the results of the text-mining models and literature review. Overall, text-mining the literature could find three times as many targets as two man-weeks of curation could. The overall efficiency of the text-mining against literature review in our study was 98% recall (at 36% precision), meaning that over all the targets for the three selected seeds, only one target has been missed by text-mining. We demonstrate that connectivity for a structure of interest can be extracted from a very large amount of publications and abstracts. We believe this tool will be useful in helping the neuroscience community to facilitate connectivity studies of particular brain regions. The text mining tools used for the study are part of the HBP Neuroinformatics Platform, publicly available at http://connectivity-brainer.rhcloud.com/.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is composed of three main parts. The first consists of a state of the art of the different notions that are significant to understand the elements surrounding art authentication in general, and of signatures in particular, and that the author deemed them necessary to fully grasp the microcosm that makes up this particular market. Individuals with a solid knowledge of the art and expertise area, and that are particularly interested in the present study are advised to advance directly to the fourth Chapter. The expertise of the signature, it's reliability, and the factors impacting the expert's conclusions are brought forward. The final aim of the state of the art is to offer a general list of recommendations based on an exhaustive review of the current literature and given in light of all of the exposed issues. These guidelines are specifically formulated for the expertise of signatures on paintings, but can also be applied to wider themes in the area of signature examination. The second part of this thesis covers the experimental stages of the research. It consists of the method developed to authenticate painted signatures on works of art. This method is articulated around several main objectives: defining measurable features on painted signatures and defining their relevance in order to establish the separation capacities between groups of authentic and simulated signatures. For the first time, numerical analyses of painted signatures have been obtained and are used to attribute their authorship to given artists. An in-depth discussion of the developed method constitutes the third and final part of this study. It evaluates the opportunities and constraints when applied by signature and handwriting experts in forensic science. A brief summary covering each chapter allows a rapid overview of the study and summarizes the aims and main themes of each chapter. These outlines presented below summarize the aims and main themes addressed in each chapter. Part I - Theory Chapter 1 exposes legal aspects surrounding the authentication of works of art by art experts. The definition of what is legally authentic, the quality and types of the experts that can express an opinion concerning the authorship of a specific painting, and standard deontological rules are addressed. The practices applied in Switzerland will be specifically dealt with. Chapter 2 presents an overview of the different scientific analyses that can be carried out on paintings (from the canvas to the top coat). Scientific examinations of works of art have become more common, as more and more museums equip themselves with laboratories, thus an understanding of their role in the art authentication process is vital. The added value that a signature expertise can have in comparison to other scientific techniques is also addressed. Chapter 3 provides a historical overview of the signature on paintings throughout the ages, in order to offer the reader an understanding of the origin of the signature on works of art and its evolution through time. An explanation is given on the transitions that the signature went through from the 15th century on and how it progressively took on its widely known modern form. Both this chapter and chapter 2 are presented to show the reader the rich sources of information that can be provided to describe a painting, and how the signature is one of these sources. Chapter 4 focuses on the different hypotheses the FHE must keep in mind when examining a painted signature, since a number of scenarios can be encountered when dealing with signatures on works of art. The different forms of signatures, as well as the variables that may have an influence on the painted signatures, are also presented. Finally, the current state of knowledge of the examination procedure of signatures in forensic science in general, and in particular for painted signatures, is exposed. The state of the art of the assessment of the authorship of signatures on paintings is established and discussed in light of the theoretical facets mentioned previously. Chapter 5 considers key elements that can have an impact on the FHE during his or her2 examinations. This includes a discussion on elements such as the skill, confidence and competence of an expert, as well as the potential bias effects he might encounter. A better understanding of elements surrounding handwriting examinations, to, in turn, better communicate results and conclusions to an audience, is also undertaken. Chapter 6 reviews the judicial acceptance of signature analysis in Courts and closes the state of the art section of this thesis. This chapter brings forward the current issues pertaining to the appreciation of this expertise by the non- forensic community, and will discuss the increasing number of claims of the unscientific nature of signature authentication. The necessity to aim for more scientific, comprehensive and transparent authentication methods will be discussed. The theoretical part of this thesis is concluded by a series of general recommendations for forensic handwriting examiners in forensic science, specifically for the expertise of signatures on paintings. These recommendations stem from the exhaustive review of the literature and the issues exposed from this review and can also be applied to the traditional examination of signatures (on paper). Part II - Experimental part Chapter 7 describes and defines the sampling, extraction and analysis phases of the research. The sampling stage of artists' signatures and their respective simulations are presented, followed by the steps that were undertaken to extract and determine sets of characteristics, specific to each artist, that describe their signatures. The method is based on a study of five artists and a group of individuals acting as forgers for the sake of this study. Finally, the analysis procedure of these characteristics to assess of the strength of evidence, and based on a Bayesian reasoning process, is presented. Chapter 8 outlines the results concerning both the artist and simulation corpuses after their optical observation, followed by the results of the analysis phase of the research. The feature selection process and the likelihood ratio evaluation are the main themes that are addressed. The discrimination power between both corpuses is illustrated through multivariate analysis. Part III - Discussion Chapter 9 discusses the materials, the methods, and the obtained results of the research. The opportunities, but also constraints and limits, of the developed method are exposed. Future works that can be carried out subsequent to the results of the study are also presented. Chapter 10, the last chapter of this thesis, proposes a strategy to incorporate the model developed in the last chapters into the traditional signature expertise procedures. Thus, the strength of this expertise is discussed in conjunction with the traditional conclusions reached by forensic handwriting examiners in forensic science. Finally, this chapter summarizes and advocates a list of formal recommendations for good practices for handwriting examiners. In conclusion, the research highlights the interdisciplinary aspect of signature examination of signatures on paintings. The current state of knowledge of the judicial quality of art experts, along with the scientific and historical analysis of paintings and signatures, are overviewed to give the reader a feel of the different factors that have an impact on this particular subject. The temperamental acceptance of forensic signature analysis in court, also presented in the state of the art, explicitly demonstrates the necessity of a better recognition of signature expertise by courts of law. This general acceptance, however, can only be achieved by producing high quality results through a well-defined examination process. This research offers an original approach to attribute a painted signature to a certain artist: for the first time, a probabilistic model used to measure the discriminative potential between authentic and simulated painted signatures is studied. The opportunities and limits that lie within this method of scientifically establishing the authorship of signatures on works of art are thus presented. In addition, the second key contribution of this work proposes a procedure to combine the developed method into that used traditionally signature experts in forensic science. Such an implementation into the holistic traditional signature examination casework is a large step providing the forensic, judicial and art communities with a solid-based reasoning framework for the examination of signatures on paintings. The framework and preliminary results associated with this research have been published (Montani, 2009a) and presented at international forensic science conferences (Montani, 2009b; Montani, 2012).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"This paper will discuss the major developments in the area of fingerprint" "identification that followed the publication of the National Research Council (NRC, of the US National Academies of Sciences) report in 2009 entitled: Strengthening Forensic Science in the United States: A Path Forward. The report portrayed an image of a field of expertise used for decades without the necessary scientific research-based underpinning. The advances since the report and the needs in selected areas of fingerprinting will be detailed. It includes the measurement of the accuracy, reliability, repeatability and reproducibility of the conclusions offered by fingerprint experts. The paper will also pay attention to the development of statistical models allow- ing assessment of fingerprint comparisons. As a corollary of these developments, the next challenge is to reconcile a traditional practice domi- nated by deterministic conclusions with the probabilistic logic of any statistical model. There is a call for greater candour and fingerprint experts will need to communicate differently on the strengths and limitations of their findings. Their testimony will have to go beyond the blunt assertion" "of the uniqueness of fingerprints or the opinion delivered ispe dixit."