101 resultados para Polygenic inheritance
Resumo:
PFAPA syndrome is the most common autoinflammatory syndrome in children from Western countries. In spite of its strong familial clustering, its genetic basis and inheritance pattern are still unknown. We performed a comprehensive genetic study on 68 individuals from 14 families. Linkage analysis suggested a susceptibility locus on chromosome 8, but direct molecular sequencing did not support this initial statistical finding. Exome sequencing revealed the absence of any gene that was mutated in all patients. Exhaustive screening of genes involved in other autoinflammatory syndromes or encoding components of the human inflammasome showed no DNA variants that could be linked to PFAPA molecular pathology. Among these, the previously-reported missense mutation V198M in the NLRP3 gene was clearly shown not to co-segregate with PFAPA. Our results on this relatively large cohort indicate that PFAPA syndrome is unlikely to be a monogenic condition. Moreover, none of the several genes known to be involved in inflammation or in autoinflammatory disorders seem to be relevant, alone, to its etiology, suggesting that PFAPA results from oligogenic or complex inheritance of variants in multiple disease genes and/or non-genetic factors.
Resumo:
Huntington's disease is an incurable neurodegenerative disease caused by inheritance of an expanded cytosine-adenine-guanine (CAG) trinucleotide repeat within the Huntingtin gene. Extensive volume loss and altered diffusion metrics in the basal ganglia, cortex and white matter are seen when patients with Huntington's disease (HD) undergo structural imaging, suggesting that changes in basal ganglia-cortical structural connectivity occur. The aims of this study were to characterise altered patterns of basal ganglia-cortical structural connectivity with high anatomical precision in premanifest and early manifest HD, and to identify associations between structural connectivity and genetic or clinical markers of HD. 3-Tesla diffusion tensor magnetic resonance images were acquired from 14 early manifest HD subjects, 17 premanifest HD subjects and 18 controls. Voxel-based analyses of probabilistic tractography were used to quantify basal ganglia-cortical structural connections. Canonical variate analysis was used to demonstrate disease-associated patterns of altered connectivity and to test for associations between connectivity and genetic and clinical markers of HD; this is the first study in which such analyses have been used. Widespread changes were seen in basal ganglia-cortical structural connectivity in early manifest HD subjects; this has relevance for development of therapies targeting the striatum. Premanifest HD subjects had a pattern of connectivity more similar to that of controls, suggesting progressive change in connections over time. Associations between structural connectivity patterns and motor and cognitive markers of disease severity were present in early manifest subjects. Our data suggest the clinical phenotype in manifest HD may be at least partly a result of altered connectivity. Hum Brain Mapp 36:1728-1740, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Cerebral, ocular, dental, auricular, skeletal anomalies (CODAS) syndrome (MIM 600373) was first described and named by Shehib et al, in 1991 in a single patient. The anomalies referred to in the acronym are as follows: cerebral-developmental delay, ocular-cataracts, dental-aberrant cusp morphology and delayed eruption, auricular-malformations of the external ear, and skeletal-spondyloepiphyseal dysplasia. This distinctive constellation of anatomical findings should allow easy recognition but despite this only four apparently sporadic patients have been reported in the last 20 years indicating that the full phenotype is indeed very rare with perhaps milder or a typical presentations that are allelic but without sufficient phenotypic resemblance to permit clinical diagnosis. We performed exome sequencing in three patients (an isolated case and a brother and sister sib pair) with classical features of CODAS. Sanger sequencing was used to confirm results as well as for mutation discovery in a further four unrelated patients ascertained via their skeletal features. Compound heterozygous or homozygous mutations in LONP1 were found in all (8 separate mutations; 6 missense, 1 nonsense, 1 small in-frame deletion) thus establishing the genetic basis of CODAS and the pattern of inheritance (autosomal recessive). LONP1 encodes an enzyme of bacterial ancestry that participates in protein turnover within the mitochondrial matrix. The mutations cluster at the ATP-binding and proteolytic domains of the enzyme. Biallelic inheritance and clustering of mutations confirm dysfunction of LONP1 activity as the molecular basis of CODAS but the pathogenesis remains to be explored.
Resumo:
Because natural selection is likely to act on multiple genes underlying a given phenotypic trait, we study here the potential effect of ongoing and past selection on the genetic diversity of human biological pathways. We first show that genes included in gene sets are generally under stronger selective constraints than other genes and that their evolutionary response is correlated. We then introduce a new procedure to detect selection at the pathway level based on a decomposition of the classical McDonald-Kreitman test extended to multiple genes. This new test, called 2DNS, detects outlier gene sets and takes into account past demographic effects and evolutionary constraints specific to gene sets. Selective forces acting on gene sets can be easily identified by a mere visual inspection of the position of the gene sets relative to their two-dimensional null distribution. We thus find several outlier gene sets that show signals of positive, balancing, or purifying selection but also others showing an ancient relaxation of selective constraints. The principle of the 2DNS test can also be applied to other genomic contrasts. For instance, the comparison of patterns of polymorphisms private to African and non-African populations reveals that most pathways show a higher proportion of nonsynonymous mutations in non-Africans than in Africans, potentially due to different demographic histories and selective pressures.
Resumo:
Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorder.
Resumo:
BACKGROUND AND AIMS: Parental history (PH) and genetic risk scores (GRSs) are separately associated with coronary heart disease (CHD), but evidence regarding their combined effects is lacking. We aimed to evaluate the joint associations and predictive ability of PH and GRSs for incident CHD. METHODS: Data for 4283 Caucasians were obtained from the population-based CoLaus Study, over median follow-up time of 5.6 years. CHD was defined as incident myocardial infarction, angina, percutaneous coronary revascularization or bypass grafting. Single nucleotide polymorphisms for CHD identified by genome-wide association studies were used to construct unweighted and weighted versions of three GRSs, comprising of 38, 53 and 153 SNPs respectively. RESULTS: PH was associated with higher values of all weighted GRSs. After adjustment for age, sex, smoking, diabetes, systolic blood pressure, low and high density lipoprotein cholesterol, PH was significantly associated with CHD [HR 2.61, 95% CI (1.47-4.66)] and further adjustment for GRSs did not change this estimate. Similarly, one standard deviation change of the weighted 153-SNPs GRS was significantly associated with CHD [HR 1.50, 95% CI (1.26-1.80)] and remained so, after further adjustment for PH. The weighted, 153-SNPs GRS, but not PH, modestly improved discrimination [(C-index improvement, 0.016), p = 0.048] and reclassification [(NRI improvement, 8.6%), p = 0.027] beyond cardiovascular risk factors. After including both the GRS and PH, model performance improved further [(C-index improvement, 0.022), p = 0.006]. CONCLUSION: After adjustment for cardiovascular risk factors, PH and a weighted, polygenic GRS were jointly associated with CHD and provided additive information for coronary events prediction.
Resumo:
Purpose: To report the clinical and genetic study of a child with bilateral anophthalmia. Methods: A 14-year-old Egyptian boy, born from consanguineous parents, underwent a general and a full ophthalmological examination. Mutation screen of the A/M genes with recessive inheritance was done stepwise and DNA was analyzed by Sanger sequencing. Results: Bilateral anophthalmia, arachnodactyly of the feet and high arched palate were observed on general examination. The parents were first cousins and healthy. Sequencing analysis revealed a novel compound heterozygous mutation in one of the copy of exon 2 of VSX2 and a possible deletion of at least exon 2 on the other allele. Conclusions: A compound heterozygous VSX2 mutation associated with anophthalmia was identified in a patient from an Egyptian consanguineous family. This report brings the number of VSX2 mutation in anophthalmia/microphthalmia (A/M) to 13. Functional consequences of the reported changes still need to be characterized, as well as the percentage of A/M caused by mutations in the VSX2 gene. This family also shows that despite consanguinity, heterozygous mutations can also happen and one should not restrict the molecular analysis to homozygous mutations.
Resumo:
In this chapter, I shall discuss the genetics, mode of inheritance and molecular origin of several corneal dystrophies.
Resumo:
BackgroundBipolar disorder is a highly heritable polygenic disorder. Recent enrichment analyses suggest that there may be true risk variants for bipolar disorder in the expression quantitative trait loci (eQTL) in the brain.AimsWe sought to assess the impact of eQTL variants on bipolar disorder risk by combining data from both bipolar disorder genome-wide association studies (GWAS) and brain eQTL.MethodTo detect single nucleotide polymorphisms (SNPs) that influence expression levels of genes associated with bipolar disorder, we jointly analysed data from a bipolar disorder GWAS (7481 cases and 9250 controls) and a genome-wide brain (cortical) eQTL (193 healthy controls) using a Bayesian statistical method, with independent follow-up replications. The identified risk SNP was then further tested for association with hippocampal volume (n = 5775) and cognitive performance (n = 342) among healthy individuals.ResultsIntegrative analysis revealed a significant association between a brain eQTL rs6088662 on chromosome 20q11.22 and bipolar disorder (log Bayes factor = 5.48; bipolar disorder P = 5.85×10(-5)). Follow-up studies across multiple independent samples confirmed the association of the risk SNP (rs6088662) with gene expression and bipolar disorder susceptibility (P = 3.54×10(-8)). Further exploratory analysis revealed that rs6088662 is also associated with hippocampal volume and cognitive performance in healthy individuals.ConclusionsOur findings suggest that 20q11.22 is likely a risk region for bipolar disorder; they also highlight the informative value of integrating functional annotation of genetic variants for gene expression in advancing our understanding of the biological basis underlying complex disorders, such as bipolar disorder.
Resumo:
PFAPA syndrome represents the most common cause of recurrent fever in children in European populations, and it is characterized by recurrent episodes of high fever, pharyngitis, cervical adenitis, and aphthous stomatitis. Many possible causative factors have been explored so far, including infectious agents, immunologic mechanisms and genetic predisposition, but the exact etiology remains unclear. Recent findings demonstrate a dysregulation of different components of innate immunity during PFAPA flares, such as monocytes, neutrophils, complement, and pro-inflammatory cytokines, especially IL-1β, suggesting an inflammasome-mediated innate immune system activation and supporting the hypothesis of an autoinflammatory disease. Moreover, in contrast with previous considerations, the strong familial clustering suggests a potential genetic origin rather than a sporadic disease. In addition, the presence of variants in inflammasome-related genes, mostly in NLRP3 and MEFV, suggests a possible role of inflammasome-composing genes in PFAPA pathogenesis. However, none of these variants seem to be relevant, alone, to its etiology, indicating a high genetic heterogeneity as well as an oligogenic or polygenic genetic background.
Resumo:
Based on Darwin's concept of the tree of life, vertical inheritance was thought to be dominant, and mutations, deletions, and duplication were streaming the genomes of living organisms. In the current genomic era, increasing data indicated that both vertical and lateral gene inheritance interact in space and time to trigger genome evolution, particularly among microorganisms sharing a given ecological niche. As a paradigm to their diversity and their survival in a variety of cell types, intracellular microorganisms, and notably intracellular bacteria, were considered as less prone to lateral genetic exchanges. Such specialized microorganisms generally have a smaller gene repertoire because they do rely on their host's factors for some basic regulatory and metabolic functions. Here we review events of lateral gene transfer (LGT) that illustrate the genetic exchanges among intra-amoebal microorganisms or between the microorganism and its amoebal host. We tentatively investigate the functions of laterally transferred genes in the light of the interaction with their host as they should confer a selective advantage and success to the amoeba-resisting microorganisms (ARMs).