122 resultados para Peace River. Rocky Mountain Trench


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To examine the effects of the world's most challenging mountain ultra-marathon (Tor des Géants(®) 2012) on the energy cost of three types of locomotion (cycling, level and uphill running) and running kinematics. METHODS: Before (pre-) and immediately after (post-) the competition, a group of ten male experienced ultra-marathon runners performed in random order three submaximal 4-min exercise trials: cycling at a power of 1.5 W kg(-1) body mass; level running at 9 km h(-1) and uphill running at 6 km h(-1) at an inclination of +15 % on a motorized treadmill. Two video cameras recorded running mechanics at different sampling rates. RESULTS: Between pre- and post-, the uphill-running energy cost decreased by 13.8 % (P = 0.004); no change was noted in the energy cost of level running or cycling (NS). There was an increase in contact time (+10.3 %, P = 0.019) and duty factor (+8.1 %, P = 0.001) and a decrease in swing time (-6.4 %, P = 0.008) in the uphill-running condition. CONCLUSION: After this extreme mountain ultra-marathon, the subjects modified only their uphill-running patterns for a more economical step mechanics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapport de synthèse :Grâce au développement de moyens de transport modernes, de plus en plus d'enfants et d'adolescents se rendent en haute altitude dans le cadre de leurs loisirs. Le mal aigu des montagnes est une complication fréquente des séjours en haute altitude. Ses symptômes en sont des maux de tête, une fatigue, des troubles du sommeil, des nausées et des vertiges. La vitesse d'ascension, |'attitude maximale atteinte, une susceptibilité individuelle ainsi qu'une acclimatation antérieure a l'attitude sont tous des facteurs influant sur le risque de développer un mal aigu des montagnes et sur sa sévérité. Bien que très fréquente chez l'adulte, nous ne possédions, au moment d'entreprendre |'étude faisant |'objet de cette thèse, que peu de données solides concernant la prévalence de cette affection chez l'enfant ainsi que sur son évolution au cours du temps. Cette étude a pour but de mesurer la prévalence du mal aigu des montagnes, et son évolution au cours du temps au sein d'un groupe d'enfants et d'adolescents dans des conditions contrôlées. C'est à dire en éliminant |'influence de facteurs confondants tels que l'importance de l'exercice physique fourni ou une différence dans la vitesse d'ascension. Pour ce faire nous avons évalué la présence de mal aigu des montagnes dans un groupe de 48 garçons et de filles âgés de 11 à 17 ans en bonne santé habituelle, n'ayant jamais séjourné en haute altitude au préalable. Afin d'évaluer la présence ou non de mal aigu des montagnes nous avons utilisé une version française du « Lake Louise Score >>. Les mesures furent effectuées 6,24 et 48 heures après |`arrivée à la station de recherche de la Jungfraujoch située à 3'450m. L'ascension a consisté en un trajet de train durant 2h30. Nos observations montrent que la prévalence du mal aigu des montagnes durant les 3 premiers jours ne dépasse jamais les 25%. Elle est similaire pour les deux sexes et diminue au cours du séjour. (17% après 24 heures, 8% après 48 heures) Aucun sujet n'a dû être évacué à une altitude inférieure, Cinq sujets ont eu besoin de recourir à un traitement symptomatique et y ont bien répondu Les résultats de cette étude démontrent que dans le groupe d'âge étudié, après une ascension rapide en haute altitude, la prévalence du mal aigu des montagnes est relativement faible, ses manifestations cliniques sont bénignes et, |lorsqu'' elles sont présentes, se résolvent rapidement. Ces observations suggèrent que pour la majorité des enfants et des adolescents en bonne santé et non habitués a |'attitude, un séjour en haute altitude ne présente pas de risque et une prophylaxie pharmacologique du mal aigu des montagnes n'est pas nécessaire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Question Can we predict where forest regrowth caused by abandonment of agricultural activities is likely to occur? Can we assess how it may conflict with grassland diversity hotspots? Location Western Swiss Alps (4003210m a.s.l.). Methods We used statistical models to predict the location of land abandonment by farmers that is followed by forest regrowth in semi-natural grasslands of the Western Swiss Alps. Six modelling methods (GAM, GBM, GLM, RF, MDA, MARS) allowing binomial distribution were tested on two successive transitions occurring between three time periods. Models were calibrated using data on land-use change occurring between 1979 and 1992 as response, and environmental, accessibility and socio-economic variables as predictors, and these were validated for their capacity to predict the changes observed from 1992 to 2004. Projected probabilities of land-use change from an ensemble forecast of the six models were combined with a model of plant species richness based on a field inventory, allowing identification of critical grassland areas for the preservation of biodiversity. Results Models calibrated over the first land-use transition period predicted the second transition with reasonable accuracy. Forest regrowth occurs where cultivation costs are high and yield potential is low, i.e. on steeper slopes and at higher elevations. Overlaying species richness with land-use change predictions, we identified priority areas for the management and conservation of biodiversity at intermediate elevations. Conclusions Combining land-use change and biodiversity projections, we propose applied management measures for targeted/identified locations to limit the loss of biodiversity that could otherwise occur through loss of open habitats. The same approach could be applied to other types of land-use changes occurring in other ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents an evaluation of the stable isotopic composition of water (hydrogen and oxygen) and dissolved inorganic carbon (DIC) of Lake Geneva, a deep, peri-alpine lake situated at the border between Switzerland and France. The research goal is to apply vertical and seasonal variations of the isotope compositions to evaluate mixing processes of pollutants, nutrients and oxygen. Depth profiles were sampled at different locations throughout Lake Geneva on a monthly and seasonal basis over the course of three years (2009-2011). The results of the oxygen isotopic composition indicate a Rhône River interflow, which can be traced for about 55 km throughout the lake during summer. The Rhône River interflow is 7 to 15 m thick and the molar fraction of Rhône water is estimated to amount up to 37 %. Calculated density of the water and measured isotopic compositions demonstrate that the interflow depth changes in conjunction with the density gradient in the water column during fall. Partial pressure of CO2 indicates that the epilimnion is taking up CO2 from the atmosphere between spring and fall. The epilimnion is most enriched in 13CDIC in September and a progressive depletion of 13CDIC can be observed in the metalimnion from spring to late fall. This stratification is dependent on the local density stratification and the results demonstrate that parameters, which are indicating photosynthesis, are not necessarily linked to δ13CDIC values. In addition, the amount of primary production shows a strong discrepancy between summer 2009 and 2010, but δ13CDIC values of the epilimnion and metalimnion do not indicate variations. In the hypolimnion of the deep lake δ13CDIC values are constant and the progressive depletion allows tracing remineralization processes. The combination of stable carbon and oxygen isotopic compositions allows furthermore tracing Rhône River water fractions, as well as wastewater, stormwater and anthropogenic induced carbon in the water column of the shallow Bay of Vidy. In combination with the results of measured micropollutants, the study underlines that concentrations of certain substances may be related to the Rhône River interflow and/or remineralization of particulate organic carbon. Water quality monitoring and research should therefore be extended to the metalimnion as well as sediment water interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The divergent glacial histories of southern and northern Europe affect present-day species diversity at coarse-grained scales in these two regions, but do these effects also penetrate to the more fine-grained scales of local communities?Methodology/Principal Findings: We carried out a cross-scale analysis to address this question for vascular plants in two mountain regions, the Alps in southern Europe and the Scandes in northern Europe, using environmentally paired vegetation plots in the two regions (n = 403 in each region) to quantify four diversity components: (i) total number of species occurring in a region (total gamma-diversity), (ii) number of species that could occur in a target plot after environmental filtering (habitat-specific gamma-diversity), (iii) pair-wise species compositional turnover between plots (plot-to-plot beta-diversity) and (iv) number of species present per plot (plot gamma-diversity). We found strong region effects on total gamma-diversity, habitat-specific gamma-diversity and plot-to-plot beta-diversity, with a greater diversity in the Alps even towards distances smaller than 50 m between plots. In contrast, there was a slightly greater plot alpha-diversity in the Scandes, but with a tendency towards contrasting region effects on high and low soil-acidity plots.Conclusions/Significance: We conclude that there are strong regional differences between coarse-grained (landscape- to regional-scale) diversity components of the flora in the Alps and the Scandes mountain ranges,but that these differences do not necessarily penetrate to the finest-grained (plot-scale) diversity component, at least not on acidic soils. Because different processes can lead to a similar pattern, we discuss the consistency of our results with Quaternary history and other divergent features between the two regions such as habitat connectivity, selection for vagility and environmental differences not accounted for in our analyses

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steep mountain catchments typically experience large sediment pulses from hillslopes which are stored in headwater channels and remobilized by debris-flows or bedload transport. Event-based sediment budget monitoring in the active Manival debris-flow torrent in the French Alps during a two-year period gave insights into the catchment-scale sediment routing during moderate rainfall intensities which occur several times each year. The monitoring was based on intensive topographic resurveys of low- and high-order channels using different techniques (cross-section surveys with total station and high-resolution channel surveys with terrestrial and airborne laser scanning). Data on sediment output volumes from the main channel were obtained by a sediment trap. Two debris-flows were observed, as well as several bedload transport flow events. Sediment budget analysis of the two debris-flows revealed that most of the debris-flow volumes were supplied by channel scouring (more than 92%). Bedload transport during autumn contributed to the sediment recharge of high-order channels by the deposition of large gravel wedges. This process is recognized as being fundamental for debris-flow occurrence during the subsequent spring and summer. A time shift of scour-and-fill sequences was observed between low- and high-order channels, revealing the discontinuous sediment transfer in the catchment during common flow events. A conceptual model of sediment routing for different event magnitude is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1903, more than 30 million m3 of rock fell from the east slopes of Turtle Mountain in Alberta, Canada, causing a rock avalanche that killed about 70 people in the town of Frank. The Alberta Government, in response to continuing instabilities at the crest of the mountain, established a sophisticated field laboratory where state-of-the-art monitoring techniques have been installed and tested as part of an early-warning system. In this chapter, we provide an overview of the causes, trigger, and extreme mobility of the landslide. We then present new data relevant to the characterization and detection of the present-day instabilities on Turtle Mountain. Fourteen potential instabilities have been identified through field mapping and remote sensing. Lastly, we provide a detailed review of the different in-situ and remote monitoring systems that have been installed on the mountain. The implications of the new data for the future stability of Turtle Mountain and related landslide runout, and for monitoring strategies and risk management, are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The depositional stratigraphy of within-channel deposits in sandy braided rivers is dominated by a variety of barforms (both singular `unit' bars and complex `compound' bars), as well as the infill of individual channels (herein termed `channel fills'). The deposits of bars and channel fills define the key components of facies models for braided rivers and their within-channel heterogeneity, knowledge of which is important for reservoir characterization. However, few studies have sought to address the question of whether the deposits of bars and channel fills can be readily differentiated from each other. This paper presents the first quantitative study to achieve this aim, using aerial images of an evolving modern sandy braided river and geophysical imaging of its subsurface deposits. Aerial photographs taken between 2000 and 2004 document the abandonment and fill of a 1 3 km long, 80 m wide anabranch channel in the sandy braided South Saskatchewan River, Canada. Upstream river regulation traps the majority of very fine sediment and there is little clay (<1%) in the bed sediments. Channel abandonment was initiated by a series of unit bars that stalled and progressively blocked the anabranch entrance, together with dune deposition and stacking at the anabranch entrance and exit. Complete channel abandonment and subsequent fill of up to 3 m of sediment took approximately two years. Thirteen kilometres of ground-penetrating radar surveys, coupled with 18 cores, were obtained over the channel fill and an adjacent 750 m long, 400 m wide, compound bar, enabling a quantitative analysis of the channel and bar deposits. Results show that, in terms of grain-size trends, facies proportions and scale of deposits, there are only subtle differences between the channel fill and bar deposits which, therefore, renders them indistinguishable. Thus, it may be inappropriate to assign different geometric and sedimentological attributes to channel fill and bar facies in object-based models of sandy braided river alluvial architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate impact studies have indicated ecological fingerprints of recent global warming across a wide range of habitats. Whereas these studies have shown responses from various local case studies, a coherent large-scale account on temperature-driven changes of biotic communities has been lacking. Here we use 867 vegetation samples above the treeline from 60 summit sites in all major European mountain systems to show that ongoing climate change gradually transforms mountain plant communities. We provide evidence that the more cold-adapted species decline and the more warm-adapted species increase, a process described here as thermophilisation. At the scale of individual mountains this general trend may not be apparent, but at the¦larger, continental scale we observed a significantly higher abundance of thermophilic species in 2008, compared with 2001. Thermophilisation of mountain plant communities mirrors the degree of recent warming and is more pronounced in areas where the temperature increase has been higher. In view of the projected climate change the observed transformation suggests a progressive decline of cold mountain habitats and their biota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One aim of this study is to determine the impact of water velocity on the uptake of indicator polychlorinated biphenyls (iPCBs) by silicone rubber (SR) and low-density polyethylene (LDPE) passive samplers. A second aim is to assess the efficiency of performance reference compounds (PRCs) to correct for the impact of water velocity. SR and LDPE samplers were spiked with 11 or 12 PRCs and exposed for 6 weeks to four different velocities (in the range of 1.6 to 37.7 cm s−1) in river-like flow conditions using a channel system supplied with river water. A relationship between velocity and the uptakewas found for each iPCB and enables to determine expected changes in the uptake due to velocity variations. For both samplers, velocity increases from 2 to 10 cm s−1, 30 cm s−1 (interpolated data) and 100 cm s−1 (extrapolated data) lead to increases of the uptake which do not exceed a factor of 2, 3 and 4.5, respectively. Results also showed that the influence of velocity decreased with increasing the octanol-water coefficient partition (log Kow) of iPCBs when SR is used whereas the opposite effect was observed for LDPE. Time-weighted average (TWA) concentrations of iPCBs in water were calculated from iPCB uptake and PRC release. These calculations were performed using either a single PRC or all the PRCs. The efficiency of PRCs to correct the impact of velocity was assessed by comparing the TWA concentrations obtained at the four tested velocities. For SR, a good agreement was found among the four TWA concentrations with both methods (average RSD b 10%). Also for LDPE, PRCs offered a good correction of the impact of water velocity (average RSD of about 10 to 20%). These results contribute to the process of acceptance of passive sampling in routine regulatory monitoring programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, published studies of alluvial bar architecture in large rivers have been restricted mostly to case studies of individual bars and single locations. Relatively little is known about how the depositional processes and sedimentary architecture of kilometre-scale bars vary within a multi-kilometre reach or over several hundreds of kilometres downstream. This study presents Ground Penetrating Radar and core data from 11, kilometre-scale bars from the Rio Parana, Argentina. The investigated bars are located between 30km upstream and 540km downstream of the Rio Parana - Rio Paraguay confluence, where a significant volume of fine-grained suspended sediment is introduced into the network. Bar-scale cross-stratified sets, with lengths and widths up to 600m and thicknesses up to 12m, enable the distinction of large river deposits from stacked deposits of smaller rivers, but are only present in half the surface area of the bars. Up to 90% of bar-scale sets are found on top of finer-grained ripple-laminated bar-trough deposits. Bar-scale sets make up as much as 58% of the volume of the deposits in small, incipient mid-channel bars, but this proportion decreases significantly with increasing age and size of the bars. Contrary to what might be expected, a significant proportion of the sedimentary structures found in the Rio Parana is similar in scale to those found in much smaller rivers. In other words, large river deposits are not always characterized by big structures that allow a simple interpretation of river scale. However, the large scale of the depositional units in big rivers causes small-scale structures, such as ripple sets, to be grouped into thicker cosets, which indicate river scale even when no obvious large-scale sets are present. The results also show that the composition of bars differs between the studied reaches upstream and downstream of the confluence with the Rio Paraguay. Relative to other controls on downstream fining, the tributary input of fine-grained suspended material from the Rio Paraguay causes a marked change in the composition of the bar deposits. Compared to the upstream reaches, the sedimentary architecture of the downstream reaches in the top ca 5m of mid-channel bars shows: (i) an increase in the abundance and thickness (up to metre-scale) of laterally extensive (hundreds of metres) fine-grained layers; (ii) an increase in the percentage of deposits comprised of ripple sets (to >40% in the upper bar deposits); and (iii) an increase in bar-trough deposits and a corresponding decrease in bar-scale cross-strata (<10%). The thalweg deposits of the Rio Parana are composed of dune sets, even directly downstream from the Rio Paraguay where the upper channel deposits are dominantly fine-grained. Thus, the change in sedimentary facies due to a tributary point-source of fine-grained sediment is primarily expressed in the composition of the upper bar deposits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimation of the dimensions of fluvial geobodies from core data is a notoriously difficult problem in reservoir modeling. To try and improve such estimates and, hence, reduce uncertainty in geomodels, data on dunes, unit bars, cross-bar channels, and compound bars and their associated deposits are presented herein from the sand-bed braided South Saskatchewan River, Canada. These data are used to test models that relate the scale of the formative bed forms to the dimensions of the preserved deposits and, therefore, provide an insight as to how such deposits may be preserved over geologic time. The preservation of bed-form geometry is quantified by comparing the Alluvial architecture above and below the maximum erosion depth of the modem channel deposits. This comparison shows that there is no significant difference in the mean set thickness of dune cross-strata above and below the basal erosion surface of the contemporary channel, thus suggesting that dimensional relationships between dune deposits and the formative bed-form dimensions are likely to be valid from both recent and older deposits. The data show that estimates of mean bankfull flow depth derived from dune, unit bar, and cross-bar channel deposits are all very similar. Thus, the use of all these metrics together can provide a useful check that all components and scales of the alluvial architecture have been identified correctly when building reservoir models. The data also highlight several practical issues with identifying and applying data relating to cross-strata. For example, the deposits of unit bars were found to be severely truncated in length and width, with only approximately 10% of the mean bar-form length remaining, and thus making identification in section difficult. For similar reasons, the deposits of compound bars were found to be especially difficult to recognize, and hence, estimates of channel depth based on this method may be problematic. Where only core data are available (i.e., no outcrop data exist), formative flow depths are suggested to be best reconstructed using cross-strata formed by dunes. However, theoretical relationships between the distribution of set thicknesses and formative dune height are found to result in slight overestimates of the latter and, hence, mean bankfull flow depths derived from these measurements. This article illustrates that the preservation of fluvial cross-strata and, thus, the paleohydraulic inferences that can be drawn from them, are a function of the ratio of the size and migration rate of bed forms and the time scale of aggradation and channel migration. These factors must thus be considered when deciding on appropriate length:thickness ratios for the purposes of object-based modeling in reservoir characterization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

River flow in Alpine environments is likely to be highly sensitive to climate change because of the effects of warming upon snow and ice, and hence the intra-annual distribution of river runoff. It is also likely to be influenced strongly by human impacts both upon hydrology (e.g. flow abstraction) and river regulation. This paper compares the river flow and sediment flux of two Alpine drainage basins over the last 5 to 7 decades, one that is largely unimpacted by human activities, one strongly impacted by flow abstraction for hydroelectricity. The analysis shows that both river flow and sediment transport capacity are strongly dependent upon the effects of temperature and precipitation availability upon snow accumulation. As the latter tends to increase annual maximum flows, and given the non-linear form of most sediment transport laws, current warming trends may lead to increased sedimentation in Alpine rivers. However, extension to a system impacted upon by flow abstraction reveals the dominant effect that human activity can have upon river sedimentation but also how human response to sediment management has co-evolved with climate forcing to make disentangling the two very difficult.