126 resultados para PHI-MESON PRODUCTION
Resumo:
In the present study, we have investigated the distribution of HIV-specific and HIV-infected CD4 T cells within different populations of memory CD4 T cells isolated from lymph nodes of viremic HIV-infected subjects. Four memory CD4 T cell populations were identified on the basis of the expression of CXCR5, PD-1, and Bcl-6: CXCR5(-)PD-1(-)Bcl-6(-), CXCR5(+)PD-1(-)Bcl-6(-), CXCR5(-)PD-1(+)Bcl-6(-), and CXCR5(+)PD-1(+)Bcl-6(+). On the basis of Bcl-6 expression and functional properties (IL-21 production and B cell help), the CXCR5(+)PD-1(+)Bcl-6(+) cell population was considered to correspond to the T follicular helper (Tfh) cell population. We show that Tfh and CXCR5(-)PD-1(+) cell populations are enriched in HIV-specific CD4 T cells, and these populations are significantly increased in viremic HIV-infected subjects as compared with healthy subjects. The Tfh cell population contained the highest percentage of CD4 T cells harboring HIV DNA and was the most efficient in supporting productive infection in vitro. Replication competent HIV was also readily isolated from Tfh cells in subjects with nonprogressive infection and low viremia (<1,000 HIV RNA copies). However, only the percentage of Tfh cells correlated with the levels of plasma viremia. These results demonstrate that Tfh cells serve as the major CD4 T cell compartment for HIV infection, replication, and production.
Resumo:
A variety of stress situations may affect the activity and survival of plant-beneficial pseudomonads added to soil to control root diseases. This study focused on the roles of the sigma factor AlgU (synonyms, AlgT, RpoE, and sigma(22)) and the anti-sigma factor MucA in stress adaptation of the biocontrol agent Pseudomonas fluorescens CHA0. The algU-mucA-mucB gene cluster of strain CHA0 was similar to that of the pathogens Pseudomonas aeruginosa and Pseudomonas syringae. Strain CHA0 is naturally nonmucoid, whereas a mucA deletion mutant or algU-overexpressing strains were highly mucoid due to exopolysaccharide overproduction. Mucoidy strictly depended on the global regulator GacA. An algU deletion mutant was significantly more sensitive to osmotic stress than the wild-type CHA0 strain and the mucA mutant were. Expression of an algU'-'lacZ reporter fusion was induced severalfold in the wild type and in the mucA mutant upon exposure to osmotic stress, whereas a lower, noninducible level of expression was observed in the algU mutant. Overexpression of algU did not enhance tolerance towards osmotic stress. AlgU was found to be essential for tolerance of P. fluorescens towards desiccation stress in a sterile vermiculite-sand mixture and in a natural sandy loam soil. The size of the population of the algU mutant declined much more rapidly than the size of the wild-type population at soil water contents below 5%. In contrast to its role in pathogenic pseudomonads, AlgU did not contribute to tolerance of P. fluorescens towards oxidative and heat stress. In conclusion, AlgU is a crucial determinant in the adaptation of P. fluorescens to dry conditions and hyperosmolarity, two major stress factors that limit bacterial survival in the environment.
Resumo:
Mouse mammary tumor virus (MMTV[SW]) encodes a superantigen expressed by infected B cells. It evokes an antibody response specific for viral envelope protein, indicating selective activation of antigen-specific B cells. The response to MMTV(SW) in draining lymph nodes was compared with the response to haptenated chicken gamma globulin (NP-CGG) using flow cytometry and immunohistology. T cell priming occurs in both responses, with T cells proliferating in association with interdigitating dendritic cells in the T zone. T cell proliferation continues in the presence of B cells in the outer T zone, and B blasts then undergo exponential growth and differentiation into plasma cells in the medullary cords. Germinal centers develop in both responses, but those induced by MMTV(SW) appear later and are smaller. Most T cells activated in the T zone and germinal centers in the MMTV(SW) response are superantigen specific and these persist for weeks in lymph nodes draining the site MMTV(SW) injection: this contrasts with the selective loss of superantigen-specific T cells from other secondary lymphoid tissues. The results indicate that this viral superantigen, when expressed by professional antigen-presenting cells, drives extrafollicular and follicular B cell differentiation leading to virus-specific antibody production.
Resumo:
Membrane proteins are notoriously difficult to express in a soluble form. Here, we use wheat germ cell-free expression in the presence of various detergents to produce the non-structural membrane proteins 2, 4B and 5A of the hepatitis C virus (HCV). We show that lauryl maltose neopentyl glycol (MNG-3) and dodecyl octaethylene glycol ether (C12E8) detergents can yield essentially soluble membrane proteins at detergent concentrations that do not inhibit the cell-free reaction. This finding can be explained by the low critical micelle concentration (CMC) of these detergents, which keeps the monomer concentrations low while at the same time providing the necessary excess of detergent concentration above CMC required for full target protein solubilization. We estimate that a tenfold excess of detergent micelles with respect to the protein concentration is sufficient for solubilization, a number that we propose as a guideline for detergent screening assays.
Resumo:
Alternative land uses make different contributions to the conservation of biodiversity and have different implementation and management costs. Conservation planning analyses to date have generally assumed that land is either protected or unprotected, and that the unprotected portion does not contribute to conservation goals. We develop and apply a new planning approach that explicitly accounts for the contribution of a diverse range of land uses to achieving conservation goals. Using East Kalimantan (Indonesian Borneo) as a case study, we prioritize investments in alternative conservation strategies and account for the relative contribution of land uses ranging from production forest to well-managed protected areas. We employ data on the distribution of mammals and assign species-specific conservation targets to achieve equitable protection by accounting for life history characteristics and home range sizes. The relative sensitivity of each species to forest degradation determines the contribution of each land use to achieving targets. We compare the cost effectiveness of our approach to a plan that considers only the contribution of protected areas to biodiversity conservation, and to a plan that assumes that the cost of conservation is represented by only the opportunity costs of conservation to the timber industry. Our preliminary results will require further development and substantial stakeholder engagement prior to implementation; nonetheless we reveal that, by accounting for the contribution of unprotected land, we can obtain more refined estimates of the costs of conservation. Using traditional planning approaches would overestimate the cost of achieving the conservation targets by an order of magnitude. Our approach reveals not only where to invest, but which strategies to invest in, in order to effectively and efficiently conserve biodiversity.
Resumo:
This study describes a form of partial agonism for a CD8+ CTL clone, S15, in which perforin-dependent killing and IFN-gamma production were lost but Fas (APO1 or CD95)-dependent cytotoxicity preserved. Cloned S15 CTL are H-2Kd restricted and specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260 (SYIPSAEKI). The presence of a photoactivatable group in the epitope permitted assessment of TCR-ligand binding by TCR photoaffinity labeling. Selective activation of Fas-dependent killing was observed for a peptide-derivative variant containing a modified photoreactive group. A similar functional response was obtained after binding of the wild-type peptide derivative upon blocking of CD8 participation in TCR-ligand binding. The epitope modification or blocking of CD8 resulted in an > or = 8-fold decrease in TCR-ligand binding. In both cases, phosphorylation of zeta-chain and ZAP-70, as well as calcium mobilization were reduced close to background levels, indicating that activation of Fas-dependent cytotoxicity required weaker TCR signaling than activation of perforin-dependent killing or IFN-gamma production. Consistent with this, we observed that depletion of the protein tyrosine kinase p56(lck) by preincubation of S15 CTL with herbimycin A severely impaired perforin- but not Fas-dependent cytotoxicity. Together with the observation that S15 CTL constitutively express Fas ligand, these results indicate that TCR signaling too weak to elicit perforin-dependent cytotoxicity or cytokine production can induce Fas-dependent cytotoxicity, possibly by translocation of preformed Fas ligand to the cell surface.
Resumo:
Recent evidence indicates that B cells are required for susceptibility to infection with Leishmania major in BALB/c mice. In this study, we analyzed the role of the IL-10 produced by B cells in this process. We showed that B cells purified from the spleen of BALB/c mice produced IL-10 in response to stimulation with L. major in vitro. In vivo, early IL-10 mRNA expression is detected after L. major infection in B cells from draining lymph nodes of susceptible BALB/c, but not of resistant C57BL/6 mice. Although adoptive transfer of naive wild-type B cells prior to infection in B cell-deficient BALB/c mice restored Th2 cell development and susceptibility to infection with L. major of these otherwise resistant mice, adoptive transfer of IL-10(-/-) B cells mice did not. B cells stimulated by L. major, following in vitro or in vivo encounter, express the CD1d and CD5 molecules and the IL-10 produced by these cells downregulate IL-12 production by L. major-stimulated dendritic cells. These observations indicate that IL-10 secreting B cells are phenotypically and functionally regulatory B cells. Altogether these results demonstrate that the IL-10 produced by regulatory CD1d+ CD5+ B cells in response to L. major is critical for Th2 cell development in BALB/c mice.
Resumo:
The complete sequence of the 7.07 Mb genome of the biological control agent Pseudomonas fluorescens Pf-5 is now available, providing a new opportunity to advance knowledge of biological control through genomics. P. fluorescens Pf-5 is a rhizosphere bacterium that suppresses seedling emergence diseases and produces a spectrum of antibiotics toxic to plant-pathogenic fungi and oomycetes. In addition to six known secondary metabolites produced by Pf-5, three novel secondary metabolite biosynthesis gene clusters identified in the genome could also contribute to biological control. The genomic sequence provides numerous clues as to mechanisms used by the bacterium to survive in the spermosphere and rhizosphere. These features include broad catabolic and transport capabilities for utilizing seed and root exudates, an expanded collection of efflux systems for defense against environmental stress and microbial competition, and the presence of 45 outer membrane receptors that should allow for the uptake of iron from a wide array of siderophores produced by soil microorganisms. As expected for a bacterium with a large genome that lives in a rapidly changing environment, Pf-5 has an extensive collection of regulatory genes, only some of which have been characterized for their roles in regulation of secondary metabolite production or biological control. Consistent with its commensal lifestyle, Pf-5 appears to lack a number of virulence and pathogenicity factors found in plant pathogen.
Resumo:
This study examines syntactic and morphological aspects of the production and comprehension of pronouns by 99 typically developing French-speaking children aged 3 years, 5 months to 6 years, 5 months. A fine structural analysis of subject, object, and reflexive clitics suggests that whereas the object clitic chain crosses the subject chain, the reflexive clitic chain is nested within it. We argue that this structural difference introduces differences in processing complexity, chain crossing being more complex than nesting. In support of this analysis, both production and comprehension experiments show that children have more difficulty with object than with reflexive clitics (with more omissions in production and more erroneous judgments in sentences involving Principle B in comprehension). Concerning the morphological aspect, French subject and object pronouns agree in gender with their referent. We report serious difficulties with pronoun gender both in production and comprehension in children around the age of 4 (with nearly 30% errors in production and chance level judgments in comprehension), which tend to disappear by age 6. The distribution of errors further suggests that the masculine gender is processed as the default value. These findings provide further insights into the relationship between comprehension and production in the acquisition process.
Resumo:
Several evidences in humans underscored the contribution of CD4 and CD8 T-cell responses in controlling viral and bacterial infections. However, CD4 and CD8 Τ cells have distinct and specific effector functions leading to a hierarchical importance in responding to different types of pathogens. In this context, the present work aimed to investigate distinct CD8 T-cell features potentially influencing T-cell efficacy against viral infection. To achieve this-objective, CD8 Τ cells derived from HIV-infected patients and healthy donors harbouring virus-specific immune responses or immunized with an HTV vaccine candidate were studied. In particular, we performed a comprehensive cross-sectional and longitudinal analysis to characterize the function, the phenotype and the functional avidity of HIV-specific CD8 Τ cells during acute (PHI) and chronic infection and, in particular, we investigated immunological parameters potentially associated with the functional avidity of HIV-specific CD8 Τ cells. In addition, we studied the expression pattern of co-inhibitory molecules and the influence of CD 160 on the functions of CD8 Τ cells in absence of chronic infections. From these analyses we observed that the functional avidity of HIV-specific CD8 T- cell responses was significantly lower in acute than in chronic infection, but was not different between chronic progressive and non-progressive patients. Functional avidity remained low after several years of antiretroviral therapy in PHI patients, but increased in patients experiencing a virus rebound following treatment interruption in association with a massive renewal of the global CD8 complementarity-determining region 3 of the TCR. The functional avidity was also directly associated to T-cell exhaustion. In individuals with no sign of HIV or Hepatitis A, Β or C virus infection, CD8 Τ cells expressed higher levels of co-inhibitory molecules than CD4 Τ cells and this was dependent on the stage of T-cell differentiation and activation. The expression of CD 160 impaired the proliferation capacity and IL-2 production of CD8 Τ cells and was reduced upon CD8 T-cell activation, entitling CD 160 as unique marker of CD8 T-cell exhaustion. The CD 160 blockade restored the proliferation capacity of virus-specific CD8 Τ cells providing a potential new target for immunotherapy. All together, these results expand our knowledge regarding the interplay between the immune system and the viruses. - De nombreuses études chez l'Homme ont mis en évidence la contribution des réponses cellulaires Τ CD4 et CD8 dans le contrôle des infections virales et bactériennes. En particulier, les lymphocytes Τ ont différentes fonctions effectrices spécifiques qui leur confèrent un rôle clé lors d'infections par différents pathogènes. Ce travail vise à étudier différentes caractéristiques des cellules Τ CD8 affectant l'efficacité des réponses cellulaires contre les virus. Pour atteindre cet objectif nous avons étudié les cellules Τ CD8 provenant de patients infectés par le VIH et de donneurs sains avec des réponses immunitaires naturelles ou vaccinales contre des virus. Nous avons effectué plusieurs analyses transversales et longitudinales des fonctions, du phénotype et de l'avidité fonctionnelle des lymphocytes Τ CD8 spécifiques au VIH au cours d'infections aiguës et chroniques; en particulier, nous avons étudié les paramètres immunologiques qui pourraient être associés à l'avidité fonctionnelle. De plus, nous avons investigué le profil d'expression des principales molécules co-inhibitrices et en particulier le rôle du CD 160 dans les fonctions des lymphocytes Τ CD8. Sur la base de ces analyses, nous avons constaté que l'avidité fonctionnelle des cellules Τ CD8 spécifiques au VIH était significativement plus faible lors infections aiguës que lors d'infections chroniques, mais n'était, par contre, pas différente entre les patients avec des infections chroniques progressives et non progressives. L'avidité fonctionnelle reste faible après plusieurs années de traitement antirétroviral, mais augmente chez les patients subissant un rebond viral, et donc exposés à des hautes virémies, suite à l'interruption du traitement. Cette augmentation d'avidité des lymphocytes Τ CD8, liée à un épuisement fonctionnel accru, était quantitativement directement associée à un renouvellement massif du TCR. Indépendamment de l'infection par le VIH, les cellules Τ CD8 expriment des niveaux plus élevés de molécules co-inhibitrices (PD-1, 2B4 et CD 160) par rapport aux cellules Τ CD4 et ceci dépend de leur stade de différenciation et d'activation. En particulier, CD 160 semble être un marqueur clé d'épuisement cellulaire des cellules Τ CD8, et donc une nouvelle cible potentielle pour l'immunothérapie, car a) son expression réduit la capacité proliférative et la production d'IL-2 b) CD 160 diminue suite à 1'activation et c) le blocage de CD 160 redonne la capacité proliférative aux cellules Τ CD8 spécifiques aux virus. - Le système immunitaire est un ensemble de cellules, tissus et organes indispensables pour limiter l'entrée des pathogènes à travers la peau et les muqueuses. Parmi les différentes cellules composant le système immunitaire, les cellules Τ CD4 et CD8 sont fondamentales pour le contrôle des infections virales et bactériennes. Les moyens pour combattre les différents pathogènes peuvent être cependant très variables. Les cellules Τ CD8, qui sont indispensables pour la lutte contre les virus, peuvent avoir différents niveaux de sensibilité; les cellules qui répondent à de faibles quantités d'antigène ont une forte sensibilité. Suite à une première infection virale, les cellules Τ CD8 ont une sensibilité plus faible que lors d'expositions répétées au même virus. En effet, la réexposition au pathogène induit une augmentation de sensibilité, grâce au recrutement et/ou à l'expansion de cellules Τ dotées d'une sensibilité plus élevée. Les cellules Τ CD8 avec une plus haute sensibilité semblent être caractérisées par une perte de fonctionnalité (épuisement fonctionnel associé à une haute expression de molécules dites inhibitrices). En absence d'infection, la fonction des molécules inhibitrices n'est pas encore clairement définie. Les cellules Τ CD8 montrent un niveau d'expression plus élevé de ces molécules par rapport aux cellules Τ CD4. Ceci dépend de l'état des cellules. Parmi ces molécules, le CD160 est associé à l'incapacité des cellules à proliférer et à produire de l'IL-2, une protéine importante pour la prolifération et la survie cellulaire. L'incapacité des cellules exprimant le CD 160 à proliférer en réponse à des virus peut être restaurée par le blocage fonctionnel du récepteur CD 160. Cette étude étoffe notre connaissance du rôle des cellules Τ CD8 ainsi que des conséquences induites par leur épuisement fonctionnel. Ces informations sont fondamentales pour le développement de nouvelles stratégies thérapeutiques et vaccinales.
Resumo:
Susceptibility of BALB/c mice to infection with Leishmania major is associated with a T helper type 2 (Th2) response. Since interleukin-4 (IL-4) is critically required early for Th2 cell development, the kinetics of IL-4 mRNA expression was compared in susceptible and resistant mice during the first days of infection. In contrast to resistant mice, susceptible mice exhibited a peak of IL-4 mRNA in their spleens 90 min after i.v. injection of parasites and in lymph nodes 16 h after s.c. injection. IL-12 and interferon-gamma (IFN-gamma) down-regulated this early peak of IL-4 mRNA; the effect of IL-12 was IFN-gamma dependent. Treatment of resistant C57BL/6 mice with anti-IFN-gamma allowed the expression of this early IL-4 response to L. major. The increased IL-4 mRNA expression occurred in V beta 8, 7, 2- CD4+ cells in BALB/c mice and NK1.1- CD4+ cells in anti-IFN-gamma treated C57BL/6 mice. These results show that the NK1.1+ CD4+ cells, responsible for the rapid burst of IL-4 production after i.v. injection of anti-CD3, do not contribute to the early IL-4 response to L. major.
Resumo:
Several lines of evidences have suggested that T cell activation could be impaired in the tumor environment, a condition referred to as tumor-induced immunosuppression. We have previously shown that tenascin-C, an extracellular matrix protein highly expressed in the tumor stroma, inhibits T lymphocyte activation in vitro, raising the possibility that this molecule might contribute to tumor-induced immunosuppression in vivo. However, the region of the protein mediating this effect has remained elusive. Here we report the identification of the minimal region of tenascin-C that can inhibit T cell activation. Recombinant fragments corresponding to defined regions of the molecule were tested for their ability to inhibit in vitro activation of human peripheral blood T cells induced by anti-CD3 mAbs in combination with fibronectin or IL-2. A recombinant protein encompassing the alternatively spliced fibronectin type III domains of tenascin-C (TnFnIII A-D) vigorously inhibited both early and late lymphocyte activation events including activation-induced TCR/CD8 down-modulation, cytokine production, and DNA synthesis. In agreement with this, full length recombinant tenascin-C containing the alternatively spliced region suppressed T cell activation, whereas tenascin-C lacking this region did not. Using a series of smaller fragments and deletion mutants issued from this region, we have identified the TnFnIII A1A2 domain as the minimal region suppressing T cell activation. Single TnFnIII A1 or A2 domains were no longer inhibitory, while maximal inhibition required the presence of the TnFnIII A3 domain. Altogether, these data demonstrate that the TnFnIII A1A2 domain mediate the ability of tenascin-C to inhibit in vitro T cell activation and provide insights into the immunosuppressive activity of tenascin-C in vivo.
Resumo:
The lpr gene has recently been shown to encode a functional mutation in the Fas receptor, a molecule involved in transducing apoptotic signals. Mice homozygous for the lpr gene develop an autoimmune syndrome accompanied by massive accumulation of double-negative (DN) CD4-8-B220+ T cell receptor-alpha/beta+ cells. In order to investigate the origin of these DN T cells, we derived lpr/lpr mice lacking major histocompatibility complex (MHC) class I molecules by intercrossing them with beta 2-microglobulin (beta 2m)-deficient mice. Interestingly, these lpr beta 2m-/- mice develop 13-fold fewer DNT cells in lymph nodes as compared to lpr/lpr wild-type (lprWT) mice. Analysis of anti-DNA antibodies and rheumatoid factor in serum demonstrates that lpr beta 2m-/- mice produce comparable levels of autoantibodies to lprWT mice. Collectively our data indicate that MHC class I molecules control the development of DN T cells but not autoantibody production in lpr/lpr mice and support the hypothesis that the majority of DN T cells may be derived from cells of the CD8 lineage.
Resumo:
Two monoclonal antibodies (mAb) directed against idiotypic determinants of the T cell receptor (anti-Ti) from HPB-ALL cells induce interleukin 2 (IL2) production in Jurkat T cells without evidence of binding to these cells as judged by fluorescence-activated cell sorter (FACS) analysis, indirect antibody-binding radioimmunoassay and direct binding studies with 125I-labeled mAb. The IL2 response induced by these mAb observed both in the presence and absence of phorbol myristate acetate was in the range of that obtained when Jurkat cells were stimulated with phytohemagglutinin or anti-T3 mAb (Leu 4). The idiotypic specificity of the two anti-HPB-ALL Ti mAb was demonstrated by several criteria. Both mAb bound specifically to HPB-ALL cells as determined by radioimmunoassay or FACS analysis but not with 8 other T cell lines. The anti-HPB-ALL Ti mAb precipitated a disulfide-linked heterodimer of 85 kDa only from 125I-labeled HPB-ALL cells and not from other cell lines tested. Incubation of HPB-ALL cells with anti-T3 abrogated the expression of T3 and induced co-modulation of the idiotypic structures detected by the two anti-HPB-ALL Ti mAb. Conversely, incubation of HPB-ALL cells with either one of the anti-Ti mAb abrogated the expression of T3 and of the idiotypic structures. Our results suggest that mAb with an apparent unique specificity for the receptor of the immunizing T cell line HPB-ALL can activate Jurkat cells by a very weak cross-reaction with these cells, which is not detectable by conventional binding tests.