141 resultados para Nitrogen loss
Resumo:
AIMS/HYPOTHESIS: Intramyocellular lipids, including diacylglycerol (DAG) and ceramides, have been linked to insulin resistance. This randomised repeated-measures study examined the effects of diet-induced weight loss (DIWL) and aerobic exercise (EX) on insulin sensitivity and intramyocellular triacylglycerol (IMTG), DAG and ceramide. METHODS: Sixteen overweight to obese adults (BMI 30.6 ± 0.8; 67.2 ± 4.0 years of age) with either impaired fasting glucose, or impaired glucose tolerance completed one of two lifestyle interventions: DIWL (n = 8) or EX (n = 8). Insulin sensitivity was determined using hyperinsulinaemic-euglycaemic clamps. Intramyocellular lipids were measured in muscle biopsies using histochemistry and tandem mass spectrometry. RESULTS: Insulin sensitivity was improved with DIWL (20.6 ± 4.7%) and EX (19.2 ± 12.9%). Body weight and body fat were decreased by both interventions, with greater decreases in DIWL compared with EX. Muscle glycogen, IMTG content and oxidative capacity were all significantly (p < 0.05) decreased with DIWL and increased with EX. There were decreases in DAG with DIWL (-12.4 ± 14.6%) and EX (-40.9 ± 12.0%). Ceramide decreased with EX (-33.7 ± 11.2%), but not with DIWL. Dihydroceramide was decreased with both interventions. Sphingosine was decreased only with EX. Changes in total DAG, total ceramides and other sphingolipids did not correlate with changes in glucose disposal. Stearoyl-coenzyme A desaturase 1 (SCD1) content was decreased with DIWL (-19.5 ± 8.5%, p < 0.05), but increased with EX (19.6 ± 7.4%, p < 0.05). Diacylglycerol acyltransferase 1 (DGAT1) was unchanged with the interventions. CONCLUSIONS/INTERPRETATION: Diet-induced weight loss and exercise training both improved insulin resistance and decreased DAG, while only exercise decreased ceramides, despite the interventions having different effects on IMTG. These alterations may be mediated through differential changes in skeletal muscle capacity for oxidation and triacylglycerol synthesis. TRIAL REGISTRATION: ClinicalTrials.gov NCT00766298.
Resumo:
BACKGROUND: Black women are at greater risk of obesity than are white women, perhaps because of their lower levels of physical activity. OBJECTIVE: We compared free-living activity energy expenditure (AEE) in sedentary white and black women (in overweight and normal-weight states) and in never-overweight control subjects. DESIGN: Subjects included 46 women (23 white, 23 black) studied while overweight and after reaching a normal weight and 38 female control subjects (23 white, 15 black). Diet, without exercise training, resulted in a mean weight loss of 13 kg and a body mass index (in kg/m(2)) < 25. Body composition, sleeping energy expenditure, free-living total energy expenditure, and the energy cost of activity and aerobic capacity were assessed before and after weight loss under 4-wk, diet-controlled, weight-stable conditions and in the control subjects. AEE was defined as above-sleep energy expenditure. RESULTS: No significant racial differences in body composition, before or after weight loss, were found. After weight loss, AEE and aerobic capacity increased in the white women and decreased in the black women (P < 0.05 and P < 0.02, respectively). After weight loss, but not before, the white women had a significantly higher mean AEE than did the black women (2448 +/- 979 and 1728 +/- 1373 kJ/d, respectively; P < 0.05), approximating AEEs in the white (2314 +/- 1105) and black (2310 +/- 1251) control subjects. CONCLUSIONS: Relative to the responses of the white women to diet-induced weight loss, the black women became less fit and less physically active. Induction of a normal body weight in overweight black women appeared to produce a more obesity-prone state, favoring weight relapse.
Resumo:
In six young obese women (mean weight 85 +/- 3 kg) with a childhood history of obesity, and in six young nonobese women (mean weight 55 +/- 2 kg), the energy expenditure was measured during 24 h in a respiratory chamber with a maintenance energy intake. The next day, the thermogenic response to a mixed meal was investigated by using an open circuit indirect calorimetry hood system. In addition, five of the same obese women were similarly studied after a mean weight loss of 12.1 kg (14% of initial body weight) consecutive to an 11-wk hypocaloric diet (protein-supplemented modified fast). Expressed in absolute terms, the total 24 h and basal energy expenditures were found to be significantly greater in the obese (2208 +/- 105 and 1661 +/- 56 kcal/24 h, respectively) than in the controls (1746 +/- 61 and 1230 +/- 40 kcal/24 h, respectively). After weight loss, both the total 24-h and the basal energy expenditures were significantly reduced (2009 +/- 99 kcal/24 h and 1423 +/- 43 kcal/24 h respectively), but both values were still greater than that of the control subjects. The thermogenic response to the mixed meal (a liquid diet containing 17, 54, and 29% as protein, carbohydrate, and lipid calories, respectively, and an energy level determined to cover 60% of the basal energy expenditure computed for 24 h) was found to be significantly reduced in the obese as compared to controls (ie, 7.6 +/- 0.4% versus 9.5 +/- 0.4% of the energy content of the load, respectively, p less than 0.025). After weight loss, the postprandial thermogenesis of the obese was still markedly reduced (ie, 6.2 +/- 0.8%). Both before and after weight loss, the relative increase in diurnal urinary norepinephrine excretion was found to be lower in the obese than in controls, when compared to the nocturnal values. These results show that the greater 24 h energy expenditure of obese women is entirely due to their higher basal metabolic rate. The lower thermogenic response to the meal in the obese supports the concept of a thermogenic defect which can favor energy gain; furthermore, the unchanged response after weight loss in the obese suggests that the thermogenic defect may be a cause rather than a consequence of obesity.
Resumo:
BACKGROUND: The Notch pathway is essential for proper epidermal differentiation during embryonic skin development. Moreover, skin specific loss of Notch signaling in the embryo results in skin barrier defects accompanied by a B-lymphoproliferative disease. However, much less is known about the consequences of loss of Notch signaling after birth. METHODOLOGY AND PRINCIPAL FINDINGS: To study the function of Notch signaling in the skin of adult mice, we made use of a series of conditional gene targeted mice that allow inactivation of several components of the Notch signaling pathway specifically in the skin. We demonstrate that skin-specific inactivation of Notch1 and Notch2 simultaneously, or RBP-J, induces the development of a severe form of atopic dermatitis (AD), characterized by acanthosis, spongiosis and hyperkeratosis, as well as a massive dermal infiltration of eosinophils and mast cells. Likewise, patients suffering from AD, but not psoriasis or lichen planus, have a marked reduction of Notch receptor expression in the skin. Loss of Notch in keratinocytes induces the production of thymic stromal lymphopoietin (TSLP), a cytokine deeply implicated in the pathogenesis of AD. The AD-like associated inflammation is accompanied by a myeloproliferative disorder (MPD) characterized by an increase in immature myeloid populations in the bone marrow and spleen. Transplantation studies revealed that the MPD is cell non-autonomous and caused by dramatic microenvironmental alterations. Genetic studies demontrated that G-CSF mediates the MPD as well as changes in the bone marrow microenvironment leading to osteopenia. SIGNIFICANCE: Our data demonstrate a critical role for Notch in repressing TSLP production in keratinocytes, thereby maintaining integrity of the skin and the hematopoietic system.
Resumo:
It is currently unclear whether tissue changes surrounding multifocal epithelial tumors are a cause or consequence of cancer. Here, we provide evidence that loss of mesenchymal Notch/CSL signaling causes tissue alterations, including stromal atrophy and inflammation, which precede and are potent triggers for epithelial tumors. Mice carrying a mesenchymal-specific deletion of CSL/RBP-Jκ, a key Notch effector, exhibit spontaneous multifocal keratinocyte tumors that develop after dermal atrophy and inflammation. CSL-deficient dermal fibroblasts promote increased tumor cell proliferation through upregulation of c-Jun and c-Fos expression and consequently higher levels of diffusible growth factors, inflammatory cytokines, and matrix-remodeling enzymes. In human skin samples, stromal fields adjacent to multifocal premalignant actinic keratosis lesions exhibit decreased Notch/CSL signaling and associated molecular changes. Importantly, these changes in gene expression are also induced by UVA, a known environmental cause of cutaneous field cancerization and skin cancer.
Resumo:
OBJECTIVE: The aim of this work was to assess loss to follow-up (LTFU) in EuroSIDA, an international multicentre observational cohort study. METHODS: LTFU was defined as no follow-up visit, CD4 cell count measurement or viral load measurement after 1 January 2006. Poisson regression was used to describe factors related to LTFU. RESULTS: The incidence of LTFU in 12 304 patients was 3.72 per 100 person-years of follow-up [95% confidence interval (CI) 3.58-3.86; 2712 LTFU] and varied among countries from 0.67 to 13.35. After adjustment, older patients, those with higher CD4 cell counts, and those who had started combination antiretroviral therapy all had lower incidences of LTFU, while injecting drug users had a higher incidence of LTFU. Compared with patients from Southern Europe and Argentina, patients from Eastern Europe had over a twofold increased incidence of LTFU after adjustment (incidence rate ratio 2.16; 95% CI 1.84-2.53; P<0.0001). A total of 2743 patients had a period of >1 year with no CD4 cell count or viral load measured during the year; 743 (27.1%) subsequently returned to follow-up. CONCLUSIONS: Some patients thought to be LTFU may have died, and efforts should be made to ascertain vital status wherever possible. A significant proportion of patients who have a year with no follow-up visit, CD4 cell count measurement or viral load measurement subsequently return to follow-up.
Resumo:
The opportunistic human pathogen Pseudomonas aeruginosa is able to utilize a wide range of carbon and nitrogen compounds, allowing it to grow in vastly different environments. The uptake and catabolism of growth substrates are organized hierarchically by a mechanism termed catabolite repression control (Crc) whereby the Crc protein establishes translational repression of target mRNAs at CA (catabolite activity) motifs present in target mRNAs near ribosome binding sites. Poor carbon sources lead to activation of the CbrAB two-component system, which induces transcription of the small RNA (sRNA) CrcZ. This sRNA relieves Crc-mediated repression of target mRNAs. In this study, we have identified novel targets of the CbrAB/Crc system in P. aeruginosa using transcriptome analysis in combination with a search for CA motifs. We characterized four target genes involved in the uptake and utilization of less preferred carbon sources: estA (secreted esterase), acsA (acetyl-CoA synthetase), bkdR (regulator of branched-chain amino acid catabolism) and aroP2 (aromatic amino acid uptake protein). Evidence for regulation by CbrAB, CrcZ and Crc was obtained in vivo using appropriate reporter fusions, in which mutation of the CA motif resulted in loss of catabolite repression. CbrB and CrcZ were important for growth of P. aeruginosa in cystic fibrosis (CF) sputum medium, suggesting that the CbrAB/Crc system may act as an important regulator during chronic infection of the CF lung.
Resumo:
Retrospective single institution analysis of all patients undergoing sleeve lobectomy or pneumonectomy between 2000 and 2005. Seventy-eight patients underwent pneumonectomy (65 patients <70 years, 13 patients >70 years) and 69 sleeve lobectomy (50 patients <70 years, 19 patients >70 years). Pre-existing co-morbidity, surgical indication and induction therapy was similarly distributed between treatment by age-groups. In patients <70 years, pneumonectomy and sleeve lobectomy resulted in a 30-day mortality of 3% vs. 0 and an overall complication rate of 26% vs. 44%, respectively. In patients >70 years, pneumonectomy and sleeve lobectomy resulted in a 30-day mortality of 15% vs. 0 and an overall complication rate of 23% vs. 32%. In both age groups, pneumonectomy was associated with more airway complications (NS) and a significantly higher postoperative loss of FEV(1) than sleeve lobectomy (P<0.0001, P<0.03). Age per se did not influence the loss of FEV(1) and DLCO for a given type of resection. Sleeve lobectomy may have a therapeutic advantage over pneumonectomy in the postoperative course of elderly patients.
Resumo:
BACKGROUND: Intraabdominal adipose tissue (IAAT) is the body fat depot most strongly related to disease risk. Weight reduction is advocated for overweight people to reduce total body fat and IAAT, although little is known about the effect of weight loss on abdominal fat distribution in different races. OBJECTIVE: We compared the effects of diet-induced weight loss on changes in abdominal fat distribution in white and black women. DESIGN: We studied 23 white and 23 black women, similar in age and body composition, in the overweight state [mean body mass index (BMI; in kg/m(2)): 28.8] and the normal-weight state (mean BMI: 24.0) and 38 never-overweight control women (mean BMI: 23.4). We measured total body fat by using a 4-compartment model, trunk fat by using dual-energy X-ray absorptiometry, and cross-sectional areas of IAAT (at the fourth and fifth lumbar vertebrae) and subcutaneous abdominal adipose tissue (SAAT) by using computed tomography. RESULTS: Weight loss was similar in white and black women (13.1 and 12.6 kg, respectively), as were losses of total fat, trunk fat, and waist circumference. However, white women lost more IAAT (P < 0.001) and less SAAT (P < 0.03) than did black women. Fat patterns regressed toward those of their respective control groups. Changes in waist circumference correlated with changes in IAAT in white women (r = 0.54, P < 0.05) but not in black women (r = 0.19, NS). CONCLUSIONS: Despite comparable decreases in total and trunk fat, white women lost more IAAT and less SAAT than did black women. Waist circumference was not a suitable surrogate marker for tracking changes in the visceral fat compartment in black women.
Fatigue and weight loss predict survival on circadian chemotherapy for metastatic colorectal cancer.
Resumo:
BACKGROUND: Chemotherapy-induced neutropenia has been associated with prolonged survival selectively in patients on a conventional schedule (combined 5-fluorouracil, leucovorin, and oxaliplatin [FOLFOX2]) but not on a chronomodulated schedule of the same drugs administered at specific circadian times (chronoFLO4). The authors hypothesized that the early occurrence of chemotherapy-induced symptoms correlated with circadian disruption would selectively hinder the efficacy of chronotherapy. METHODS: Fatigue and weight loss (FWL) were considered to be associated with circadian disruption based on previous data. Patients with metastatic colorectal cancer (nâeuro0/00=âeuro0/00543) from an international phase 3 trial comparing FOLFOX2 with chronoFLO4 were categorized into 4 subgroups according to the occurrence of FWL or other clinically relevant toxicities during the initial 2 courses of chemotherapy. Multivariate Cox models were used to assess the role of toxicity on the time to progression (TTP) and overall survival (OS). RESULTS: The proportions of patients in the 4 subgroups were comparable in both treatment arms (Pâeuro0/00=âeuro0/00.77). No toxicity was associated with TTP or OS on FOLFOX2. The median OS on FOLFOX2 ranged from 16.4 (95% confidence limits [CL], 7.2-25.6 months) to 19.8 months (95% CL, 17.7-22.0 months) according to toxicity subgroup (Pâeuro0/00=âeuro0/00.45). Conversely, FWL, but no other toxicity, independently predicted for significantly shorter TTP (Pâeuro0/00<âeuro0/00.0001) and OS (Pâeuro0/00=âeuro0/00.001) on chronoFLO4. The median OS on chronoFLO4 was 13.8 months (95% CL, 10.4-17.2 months) or 21.1 months (95% CL, 19.0-23.1 months) according to presence or absence of chemotherapy-induced FWL, respectively. CONCLUSIONS: Early onset chemotherapy-induced FWL was an independent predictor of poor TTP and OS only on chronotherapy. Dynamic monitoring to detect early chemotherapy-induced circadian disruption could allow the optimization of rapid chronotherapy and concomitant improvements in safety and efficacy.
Resumo:
Staphylococcus aureus can colonize and infect both humans and animals, but isolates from both hosts tend to belong to different lineages. Our recent finding of bovine-adapted S. aureus showing close genetic relationship to the human S. aureus clonal complex 8 (CC8) allowed us to examine the genetic basis of host adaptation in this particular CC. Using total chromosome microarrays, we compared the genetic makeup of 14 CC8 isolates obtained from cows suffering subclinical mastitis, with nine CC8 isolates from colonized or infected human patients, and nine S. aureus isolates belonging to typical bovine CCs. CC8 isolates were found to segregate in a unique group, different from the typical bovine CCs. Within this CC8 group, human and bovine isolates further segregated into three subgroups, among which two contained a mix of human and bovine isolates, and one contained only bovine isolates. This distribution into specific clusters and subclusters reflected major differences in the S. aureus content of mobile genetic elements (MGEs). Indeed, while the mixed human-bovine clusters carried commonly human-associated β-hemolysin converting prophages, the bovine-only isolates were devoid of such prophages but harbored an additional new non-mec staphylococcal cassette chromosome (SCC) unique to bovine CC8 isolates. This composite cassette carried a gene coding for a new LPXTG-surface protein sharing homologies with a protein found in the environmental bacterium Geobacillus thermoglucosidans. Thus, in contrast to human CC8 isolates, the bovine-only CC8 group was associated with the combined loss of β-hemolysin converting prophages and gain of a new SCC probably acquired in the animal environment. Remaining questions are whether the new LPXTG-protein plays a role in bovine colonization or infection, and whether the new SCC could further acquire antibiotic-resistance genes and carry them back to human.