204 resultados para Neuronal Nicotinic Receptor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conformational changes of channel activation: Five enhanced green fluorescent protein (EGFP) molecules (green cylinders) were integrated into the intracellular part of the homopentameric ionotropic 5-HT3 receptor. This allowed the detection of extracellular binding of fluorescent ligands (?) to EGFP by FRET, and also enabled the quantification of agonist-induced conformational changes in the intracellular region of the receptor by homo-FRET between EGFPs. The approach opens novel ways for probing receptor activation and functional screening of therapeutic compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show here that the alpha, beta, and gamma isotypes of peroxisome proliferator-activated receptor (PPAR) are expressed in the mouse epidermis during fetal development and that they disappear progressively from the interfollicular epithelium after birth. Interestingly, PPARalpha and beta expression is reactivated in the adult epidermis after various stimuli, resulting in keratinocyte proliferation and differentiation such as tetradecanoylphorbol acetate topical application, hair plucking, or skin wound healing. Using PPARalpha, beta, and gamma mutant mice, we demonstrate that PPARalpha and beta are important for the rapid epithelialization of a skin wound and that each of them plays a specific role in this process. PPARalpha is mainly involved in the early inflammation phase of the healing, whereas PPARbeta is implicated in the control of keratinocyte proliferation. In addition and very interestingly, PPARbeta mutant primary keratinocytes show impaired adhesion and migration properties. Thus, the findings presented here reveal unpredicted roles for PPARalpha and beta in adult mouse epidermal repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Each cell is equipped with two copies (alleles) of each autosomal gene. While the vast majority use both alleles, occasional genes are expressed from a single allele. The reason for mono-allelic expression is not always evident and can serve distinct purposes. First, it may facilitate the tight control over the dosage of certain gene products such as some growth factors and their receptors or X-linked genes. Second, the differential usage of the two parental alleles may reflect the mechanisms that ensure mono-specificity, e.g. olfactory receptors, T and B cell receptors. The context of allele-specific expression of the murine Ly49 natural killer (NK) cell receptor genes suggests that their allele-specific expression reflects a process that generates clonal variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have prepared transgenic mice whose T cells constitutively express a chimeric receptor combining extracellular human IL-4R and intracellular IL-2Rbeta segments. This receptor can transmit IL-2/IL-15-like signals in response to human, but not mouse, IL-4. We used these animals to explore to what extent functional IL-2R/IL-15R expression controls the capacity of T cells to proliferate in response to IL-2/IL-15-like signals. After activation with Con A, naive transgenic CD8+ and CD4+ T cells respond to human IL-4 as well as to IL-2. Without prior activation, they failed to proliferate in response to human IL-4, although human IL-4 did prolong their survival. Thus, IL-2-induced proliferation of activated T cells requires at least one other Ag-induced change apart from the induction of a functional IL-2R. However, a fraction of CD8+CD44high T cells proliferate in human IL-4 without antigenic stimulation or syngeneic feeder cells. In contrast, CD4+CD44high T cells are not constitutively responsive to human IL-4. We conclude that although all transgenic T cells express a functional chimeric receptor, only some CD8+CD44high T cells contain all molecules required for entry into the cell cycle in response to human IL-4 or IL-15.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIMS: The Peroxisome Proliferator-Activated Receptor (PPAR) alpha belongs to the superfamily of Nuclear Receptors and plays an important role in numerous cellular processes, including lipid metabolism. It is known that PPARalpha also has an anti-inflammatory effect, which is mainly achieved by down-regulating pro-inflammatory genes. The objective of this study was to further characterize the role of PPARalpha in inflammatory gene regulation in liver. RESULTS: According to Affymetrix micro-array analysis, the expression of various inflammatory genes in liver was decreased by treatment of mice with the synthetic PPARalpha agonist Wy14643 in a PPARalpha-dependent manner. In contrast, expression of Interleukin-1 receptor antagonist (IL-1ra), which was acutely stimulated by LPS treatment, was induced by PPARalpha. Up-regulation of IL-1ra by LPS was lower in PPARalpha -/- mice compared to Wt mice. Transactivation and chromatin immunoprecipitation studies identified IL-1ra as a direct positive target gene of PPARalpha with a functional PPRE present in the promoter. Up-regulation of IL-1ra by PPARalpha was conserved in human HepG2 hepatoma cells and the human monocyte/macrophage THP-1 cell line. CONCLUSIONS: In addition to down-regulating expression of pro-inflammatory genes, PPARalpha suppresses the inflammatory response by direct up-regulation of genes with anti-inflammatory properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell growth and differentiation are opposite events in the myogenic lineage. Growth factors block the muscle differentiation program by inducing the expression of transcription factors that negatively regulate the expression of muscle regulatory genes like MyoD. In contrast, extracellular clues that induce cell cycle arrest promote MyoD expression and muscle differentiation. Thus, the regulation of MyoD expression is critical for muscle differentiation. Here we show that estrogen induces MyoD expression in mouse skeletal muscle in vivo and in dividing myoblasts in vitro by relieving the MyoD promoter from AP-1 negative regulation through a mechanism involving estrogen receptor/AP-1 protein-protein interactions but independent of the estrogen receptor DNA binding activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quand on parle de l'acide lactique (aussi connu sous le nom de lactate) une des premières choses qui vient à l'esprit, c'est son implication en cas d'intense activité musculaire. Sa production pendant une activité physique prolongée est associée avec la sensation de fatigue. Il n'est donc pas étonnant que cette molécule ait été longtemps considérée comme un résidu du métabolisme, possiblement toxique et donc à éliminer. En fait, il a été découvert que le lactate joue un rôle prépondérant dans le métabolisme grâce à son fort potentiel énergétique. Le cerveau, en particulier les neurones qui le composent, est un organe très gourmand en énergie. Récemment, il a été démontré que les astrocytes, cellules du cerveau faisant partie de la famille des cellules gliales, utilisent le glucose pour produire du lactate comme source d'énergie et le distribue aux neurones de manière adaptée à leur activité. Cette découverte a renouvelé l'intérêt scientifique pour le lactate. Aujourd'hui, plusieurs études ont démontré l'implication du lactate dans d'autres fonctions de la physiologie cérébrale. Dans le cadre de notre étude, nous nous sommes intéressés au rapport entre neurones et astrocytes avec une attention particulière pour le rôle du lactate. Nous avons découvert que le lactate possède la capacité de modifier la communication entre les neurones. Nous avons aussi décrypté le mécanisme grâce auquel le lactate agit, qui est basé sur un récepteur présent à la surface des neurones. Cette étude montre une fonction jusque-là insoupçonnée du lactate qui a un fort impact sur la compréhension de la relation entre neurones et astrocytes. - Relatively to its volume, the brain uses a large amount of glucose as energy source. Furthermore, a tight link exists between the level of synaptic activity and the consumption of energy equivalents. Astrocytes have been shown to play a central role in the regulation of this so-called neurometabolic coupling. They are thought to deliver the metabolic substrate lactate to neurons in register to glutamatergic activity. The astrocytic uptake of glutamate, released in the synaptic cleft, is the trigger signal that activates an intracellular cascade of events that leads to the production and release of lactate from astrocytes. The main goal of this thesis work was to obtain detailed information on the metabolic and functional interplay between neurons and astrocytes, in particular on the influence of lactate besides its metabolic effects. To gain access to both spatial and temporal aspects of these dynamic interactions, we used optical microscopy associated with specific fluorescent indicators, as well as electrophysiology. In the first part of this thesis, we show that lactate decreases spontaneous neuronal, activity in a concentration-dependent manner and independently of its metabolism. We further identified a receptor-mediated pathway underlying this modulatory action of lactate. This finding constituted a novel mechanism for the modulation of neuronal transmission by lactate. In the second part, we have undergone a characterization of a new pharmacological tool, a high affinity glutamate transporter inhibitor. The finality of this study was to investigate the detailed pharmacological properties of the compound to optimize its use as a suppressor of glutamate signal from neuron to astrocytes. In conclusion, both studies have implications not only for the understanding of the metabolic cooperation between neurons and astrocytes, but also in the context of the glial modulation of neuronal activity. - Par rapport à son volume, le cerveau utilise une quantité massive de glucose comme source d'énergie. De plus, la consommation d'équivalents énergétiques est étroitement liée au niveau d'activité synaptique. Il a été montré que dans ce couplage neurométabolique, un rôle central est joué par les astrocytes. Ces cellules fournissent le lactate, un substrat métabolique, aux neurones de manière adaptée à leur activité glutamatergique. Plus précisément, le glutamate libéré dans la fente synaptique par les neurones, est récupéré par les astrocytes et déclenche ainsi une cascade d'événements intracellulaires qui conduit à la production et libération de lactate. Les travaux de cette thèse ont visé à étudier la relation métabolique et fonctionnelle entre neurones et astrocytes, avec une attention particulière pour des rôles que pourrait avoir le lactate au-delà de sa fonction métabolique. Pour étudier les aspects spatio-temporels de ces interactions dynamiques, nous avons utilisé à la fois la microscopie optique associée à des indicateurs fluorescents spécifiques, ainsi que l'électrophysiologie. Dans la première partie de cette thèse, nous montrons que le lactate diminue l'activité neuronale spontanée de façon concentration-dépendante et indépendamment de son métabolisme. Nous avons identifié l'implication d'un récepteur neuronal au lactate qui sous-tend ce mécanisme de régulation. La découverte de cette signalisation via le lactate constitue un mode d'interaction supplémentaire et nouveau entre neurones et astrocytes. Dans la deuxième partie, nous avons caractérisé un outil pharmacologique, un inhibiteur des transporteurs du glutamate à haute affinité. Le but de cette étude était d'obtenir un agent pharmacologique capable d'interrompre spécifiquement le signal médié par le glutamate entre neurones et astrocytes pouvant permettre de mieux comprendre leur relation. En conclusion, ces études ont une implication non seulement pour la compréhension de la coopération entre neurones et astrocytes mais aussi dans le contexte de la modulation de l'activité neuronale par les cellules gliales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Central serous chorioretinopathy (CSCR) is a vision-threatening eye disease with no validated treatment and unknown pathogeny. In CSCR, dilation and leakage of choroid vessels underneath the retina cause subretinal fluid accumulation and retinal detachment. Because glucocorticoids induce and aggravate CSCR and are known to bind to the mineralocorticoid receptor (MR), CSCR may be related to inappropriate MR activation. Our aim was to assess the effect of MR activation on rat choroidal vasculature and translate the results to CSCR patients. Intravitreous injection of the glucocorticoid corticosterone in rat eyes induced choroidal enlargement. Aldosterone, a specific MR activator, elicited the same effect, producing choroid vessel dilation -and leakage. We identified an underlying mechanism of this effect: aldosterone upregulated the endothelial vasodilatory K channel KCa2.3. Its blockade prevented aldosterone-induced thickening. To translate these findings, we treated 2 patients with chronic nonresolved CSCR with oral eplerenone, a specific MR antagonist, for 5 weeks, and observed impressive and rapid resolution of retinal detachment and choroidal vasodilation as well as improved visual acuity. The benefit was maintained 5 months after eplerenone withdrawal. Our results identify MR signaling as a pathway controlling choroidal vascular bed relaxation and provide a pathogenic link with human CSCR, which suggests that blockade of MR could be used therapeutically to reverse choroid vasculopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation is intimately linked with naturally occurring remodeling events in the endometrium. Lipoxins comprise a group of short-lived, nonclassic eicosanoids possessing potent anti-inflammatory and proresolution properties. In the present study, we investigated the role of lipoxin A(4) (LXA(4)) in the endometrium and demonstrated that 15-LOX-2, an enzyme necessary for LX biosynthesis, is expressed in this tissue. Our results establish that LXA(4) possesses robust estrogenic activity through its capacity to alter ERE transcriptional activity, as well as expression of estrogen-regulated genes, alkaline phosphatase activity, and proliferation in human endometrial epithelial cells. Interestingly, LXA(4) also demonstrated antiestrogenic potential, significantly attenuating E2-induced activity. This estrogenic activity was directly mediated through estrogen receptors (ERs). Subsequent investigations determined that the actions of LXA(4) are exclusively mediated through ERα and closely mimic those of the potent estrogen 17β-estradiol (E2). In binding assays, LXA(4) competed with E2 for ER binding, with an IC(50) of 46 nM. Furthermore, LXA(4) exhibited estrogenic activity in vivo, increasing uterine wet weight and modulating E2-regulated gene expression. These findings reveal a previously unappreciated facet of LXA(4) bioactions, implicating this lipid mediator in novel immunoendocrine crosstalk mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic cancer is one of the most lethal forms of human cancer. Although progress in oncology has improved outcomes in many forms of cancer, little progress has been made in pancreatic carcinoma and the prognosis of this malignancy remains grim. Several molecular abnormalities often present in pancreatic cancer have been defined and include mutations in K-ras, p53, p16, and DPC4 genes. Nuclear receptor Peroxisome Proliferator-Activated Receptor gamma (PPARγ) has a role in many carcinomas and has been found to be overexpressed in pancreatic cancer. It plays generally a tumor suppressor role antagonizing proteins promoting carcinogenesis such as NF-κB and TGFβ. Regulation of pathways involved in pancreatic carcinogenesis is effectuated by the Ubiquitin Proteasome System (UPS). This paper will examine PPARγ in pancreatic cancer, the regulation of this nuclear receptor by the UPS, and their relationship to other pathways important in pancreatic carcinogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural killer T (NKT) cells are a subset of mature alpha beta TCR(+) cells that co-express NK lineage markers. Whereas most NKT cells express a canonical Valpha14/Vbeta8.2 TCR and are selected by CD1d, a minority of NKT cells express a diverse TCR repertoire and develop independently of CD1d. Little is known about the selection requirements of CD1d-independent NKT cells. We show here that NKT cells develop in RAG-deficient mice expressing an MHC class II-restricted transgenic TCR (Valpha2/Vbeta8.1) but only under conditions that lead to negative selection of conventional T cells. Moreover development of NKT cells in these mice is absolutely dependent upon an intact TCR alpha-chain connecting peptide domain, which is required for positive selection of conventional T cells via recruitment of the ERK signaling pathway. Collectively our data demonstrate that NKT cells can develop as a result of high avidity TCR/MHC class II interactions and suggest that common signaling pathways are involved in the positive selection of CD1d-independent NKT cells and conventional T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The follicle-associated epithelium (FAE) that overlies Peyer's patches (PPs) exhibits distinct features compared with the adjacent villus epithelium. Besides the presence of antigen-sampling membranous M cells and the down-regulation of digestive functions, it constitutively expresses the chemokine CCL20. The mechanisms that induce FAE differentiation and CCL20 expression are poorly understood. The aim of this work was to test whether lymphotoxin beta receptor signaling (LTbetaR), which plays a central role in PPs' organogenesis, mediates CCL20 gene expression in intestinal epithelial cells. METHODS: CCL20, lymphotoxin beta (LTbeta) and LTbetaR expression were monitored during embryonic development by in situ hybridization of mouse intestine. The human intestinal epithelial cell line T84 was used to study CCL20 expression following LTalpha(1)/beta(2) stimulation. In vivo CCL20 expression following agonistic anti-LTbetaR antibody treatment was studied by laser microdissection and quantitative RT-PCR. RESULTS: CCL20 was expressed in the FAE before birth at the time when the first hematopoietic CD4(+)CD3(-) appeared in the PP anlage. LTbetaR was expressed in the epithelium during PP organogenesis, making it a putative target for LTalpha(1)beta(2)signals. In vitro, CCL20 was induced in T84 cells upon LTbetaR signaling, either using an agonistic ligand or anti-LTbeta receptor agonistic antibody. LTalpha(1)beta(2)-induced CCL20 expression was found to be NF-kappaB dependent. LTbetaR signaling up-regulated CCL20 expression in the small intestinal epithelium in vivo. CONCLUSIONS: Our results show that LTbetaR signaling induces CCL20 expression in intestinal epithelial cells, suggesting that this pathway triggers constitutive production of CCL20 in the FAE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroblastoma represents the most common and deadly solid tumour of childhood, which disparate biological and clinical behaviour can be explained by differential regulation of apoptosis. To understand mechanisms underlying death resistance in neuroblastoma cells, we developed small hairpin of RNA produced by lentiviral vectors as tools to selectively interfere with FLIP(L), a major negative regulator of death receptor-induced apoptosis. Such tools revealed highly efficient in interfering with FLIP(L) expression and function as they almost completely repressed endogenous and/or exogenously overexpressed FLIP(L) protein and fully reversed FLIP(L)-mediated TRAIL resistance. Moreover, interference with endogenous FLIP(L) and FLIP(S) significantly restored FasL sensitivity in SH-EP neuroblastoma cell line. These results reveal the ability of lentivirus-mediated shRNAs to specifically and persistently interfere with FLIP expression and support involvement of FLIP in the regulation of death receptor-mediated apoptosis in neuroblastoma cells. Combining such tools with other therapeutic modalities may improve treatment of resistant tumours such as neuroblastoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GABA receptors are ubiquitous in the cerebral cortex and play a major role in shaping responses of cortical neurons. GABAA and GABAB receptor subunit expression was visualized by immunohistochemistry in human auditory areas from both hemispheres in 9 normal subjects (aged 43-85 years; time between death and fixation 6-24 hours) and in 4 stroke patients (aged 59-87 years; time between death and fixation 7-24 hours) and analyzed qualitatively for GABAA and semiquantitatively for GABAB receptor subunits. In normal brains, the primary auditory area (TC) and the surrounding areas TB and TA displayed distinct GABAA receptor subunit labeling with differences among cortical layers and areas. In postacute and chronic stroke we found a layer-selective downregulation of the alpha-2 subunit in the anatomically intact cerebral cortex of the intact and of the lesioned hemisphere, whereas the alpha-1, alpha-3 and beta-2/3 subunits maintained normal levels of expression. The GABAB receptors had a distinct laminar pattern in auditory areas and minor differences among areas. Unlike in other pathologies, there is no modulation of the GABAB receptor expression in subacute or chronic stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ligands of the tumor necrosis factor superfamily (TNFSF) (4-1BBL, APRIL, BAFF, CD27L, CD30L, CD40L, EDA1, EDA2, FasL, GITRL, LIGHT, lymphotoxin alpha, lymphotoxin alphabeta, OX40L, RANKL, TL1A, TNF, TWEAK, and TRAIL) bind members of the TNF receptor superfamily (TNFRSF). A comprehensive survey of ligand-receptor interactions was performed using a flow cytometry-based assay. All ligands engaged between one and five receptors, whereas most receptors only bound one to three ligands. The receptors DR6, RELT, TROY, NGFR, and mouse TNFRH3 did not interact with any of the known TNFSF ligands, suggesting that they either bind other types of ligands, function in a ligand-independent manner, or bind ligands that remain to be identified. The study revealed that ligand-receptor pairs are either cross-reactive between human and mouse (e.g. Tweak/Fn14, RANK/RANKL), strictly species-specific (GITR/GITRL), or partially species-specific (e.g. OX40/OX40L, CD40/CD40L). Interestingly, the receptor binding patterns of lymphotoxin alpha and alphabeta are redundant in the human but not in the mouse system. Ligand oligomerization allowed detection of weak interactions, such as that of human TNF with mouse TNFR2. In addition, mouse APRIL exists as two different splice variants differing by a single amino acid. Although human APRIL does not interact with BAFF-R, the shorter variant of mouse APRIL exhibits weak but detectable binding to mouse BAFF-R.