94 resultados para NITROGEN UPTAKE
Resumo:
OBJECTIVES: Direct-acting antiviral agents (DAAs) have become the standard of care for the treatment of chronic hepatitis C virus (HCV) infection. We aimed to assess treatment uptake and efficacy in routine clinical settings among HIV/HCV coinfected patients after the introduction of the first generation DAAs. METHODS: Data on all Swiss HIV Cohort Study (SHCS) participants starting HCV protease inhibitor (PI) treatment between September 2011 and August 2013 were collected prospectively. The uptake and efficacy of HCV therapy were compared with those in the time period before the availability of PIs. RESULTS: Upon approval of PI treatment in Switzerland in September 2011, 516 SHCS participants had chronic HCV genotype 1 infection. Of these, 57 (11%) started HCV treatment during the following 2 years with either telaprevir, faldaprevir or boceprevir. Twenty-seven (47%) patients were treatment-naïve, nine (16%) were patients with relapse and 21 (37%) were partial or null responders. Twenty-nine (57%) had advanced fibrosis and 15 (29%) had cirrhosis. End-of-treatment virological response was 84% in treatment-naïve patients, 88% in patients with relapse and 62% in previous nonresponders. Sustained virological response was 78%, 86% and 40% in treatment-naïve patients, patients with relapse and nonresponders, respectively. Treatment uptake was similar before (3.8 per 100 patient-years) and after (6.1 per 100 patient-years) the introduction of PIs, while treatment efficacy increased considerably after the introduction of PIs. CONCLUSIONS: The introduction of PI-based HCV treatment in HIV/HCV-coinfected patients improved virological response rates, while treatment uptake remained low. Therefore, the introduction of PIs into the clinical routine was beneficial at the individual level, but had only a modest effect on the burden of HCV infection at the population level.
Cadmium uptake and induction of metallothionein synthesis in a renal epithelial cell line (LLC-PK1).
Resumo:
LLC-PK1 cells, an established cell line from pig kidney with proximal tubule properties, were cultivated in vitro at confluence on plastic dishes. They were then exposed (apical side) to inorganic cadmium (CdCl2, 5 microM) for periods ranging between 1 to 24 h. Analysis of the cell supernatant after homogenisation and ultracentrifugation indicated that Cd taken up in the first 3 h was bound to cytosolic high molecular weight proteins, but was redistributed to low molecular weight proteins at later stages. Induction of Cd-metallothionein (Cd-Mt) synthesis, as judged from Cd-Mt binding to a specific anti-Cd-Mt antibody and from the rate of 35S-cys incorporation into a specific protein fraction, was apparent 3-6 h after the addition of Cd to the incubation medium.
Resumo:
Estimation of human oxygen uptake (V˙o2) during exercise is often used as an alternative when its direct measurement is not feasible. The American College of Sports Medicine (ACSM) suggests estimating human V˙o2 during exercise on a cycle ergometer through an equation that considers individual's body mass and external work rate, but not pedaling rate (PR). We hypothesized that including PR in the ACSM equation would improve its V˙o2 prediction accuracy. Ten healthy male participants' (age 19-48 years) were recruited and their steady-state V˙o2 was recorded on a cycle ergometer for 16 combinations of external work rates (0, 50, 100, and 150 W) and PR (50, 70, 90, and 110 revolutions per minute). V˙o2 was calculated by means of a new equation, and by the ACSM equation for comparison. Kinematic data were collected by means of an infrared 3-D motion analysis system in order to explore the mechanical determinants of V˙o2. Including PR in the ACSM equation improved the accuracy for prediction of sub-maximal V˙o2 during exercise (mean bias 1.9 vs. 3.3 mL O2 kg(-1) min(-1)) but it did not affect the accuracy for prediction of maximal V˙o2 (P > 0.05). Confirming the validity of this new equation, the results were replicated for data reported in the literature in 51 participants. We conclude that PR is an important determinant of human V˙o2 during cycling exercise, and it should be considered when predicting oxygen consumption.
Resumo:
BACKGROUND & AIMS: Protein and energy requirements in critically ill children are currently based on insufficient data. Moreover, longitudinal measurements of both total urinary nitrogen (TUN) and resting energy expenditure (REE) are lacking. The aim of this study was to investigate how much protein and energy are needed to equilibrate nitrogen and energy balances in ventilated critically ill children on the basis of daily measurements of TUN, REE and protein and energy intakes. Comparisons were made with the guidelines of the American Society for Parenteral and Enteral Nutrition and the Dietary Reference Intakes. METHODS: Children with an expected duration of mechanical ventilation ≥72 h were prospectively recruited. TUN was measured by chemiluminescence, and REE was measured by indirect calorimetry. Generalised linear models for longitudinal data were used to study the relation between protein intake and nitrogen balance and to calculate the minimum intake of protein needed to achieve nitrogen equilibrium. A similar approach was used for energy. Results were compared to the recommended values. RESULTS: Based on 402 measurements performed in 74 children (median age: 21 months), the mean TUN was high at 0.20 (95% CI: 0.20, 0.22) g/kg/d and the REE was 55 (95% CI: 54, 57) kcal/kg/d. Nitrogen and energy balances were achieved with 1.5 (95% CI: 1.4, 1.6) g/kg/d of protein and 58 (95% CI: 53, 63) kcal/kg/d for the entire group, but there were differences among children of different ages. Children required more protein and less energy than the Dietary Reference Intakes. CONCLUSIONS: In critically ill children, TUN was elevated and REE was reduced during the entire period of mechanical ventilation. Minimum intakes of 1.5 g/kg/d of protein and 58 kcal/kg/d can equilibrate nitrogen and energy balances in children up to 4 years old. Older children require more protein.