260 resultados para N-ethylmaleimide sensitive factor (NSF)
Resumo:
According to the most widely accepted Cattell-Horn-Carroll (CHC) model of intelligence measurement, each subtest score of the Wechsler Intelligence Scale for Adults (3rd ed.; WAIS-III) should reflect both 1st- and 2nd-order factors (i.e., 4 or 5 broad abilities and 1 general factor). To disentangle the contribution of each factor, we applied a Schmid-Leiman orthogonalization transformation (SLT) to the standardization data published in the French technical manual for the WAIS-III. Results showed that the general factor accounted for 63% of the common variance and that the specific contributions of the 1st-order factors were weak (4.7%-15.9%). We also addressed this issue by using confirmatory factor analysis. Results indicated that the bifactor model (with 1st-order group and general factors) better fit the data than did the traditional higher order structure. Models based on the CHC framework were also tested. Results indicated that a higher order CHC model showed a better fit than did the classical 4-factor model; however, the WAIS bifactor structure was the most adequate. We recommend that users do not discount the Full Scale IQ when interpreting the index scores of the WAIS-III because the general factor accounts for the bulk of the common variance in the French WAIS-III. The 4 index scores cannot be considered to reflect only broad ability because they include a strong contribution of the general factor.
Resumo:
All developmental transitions throughout the life cycle of a plant are influenced by light. In Arabidopsis, multiple photoreceptors including the UV-A/blue-sensing cryptochromes (cry1-2) and the red/far-red responsive phytochromes (phyA-E) monitor the ambient light conditions. Light-regulated protein stability is a major control point of photomorphogenesis. The ubiquitin E3 ligase COP1 (constitutively photomorphogenic 1) regulates the stability of several light-signaling components. HFR1 (long hypocotyl in far-red light) is a putative transcription factor with a bHLH domain acting downstream of both phyA and the cryptochromes. HFR1 is closely related to PIF1, PIF3, and PIF4 (phytochrome interacting factor 1, 3 and 4), but in contrast to the latter three, there is no evidence for a direct interaction between HFR1 and the phytochromes. Here, we show that the protein abundance of HFR1 is tightly controlled by light. HFR1 is an unstable phosphoprotein, particularly in the dark. The proteasome and COP1 are required in vivo to degrade phosphorylated HFR1. In addition, HFR1 can interact with COP1, consistent with the idea of COP1 directly mediating HFR1 degradation. We identify a domain, conserved among several bHLH class proteins involved in light signaling , as a determinant of HFR1 stability. Our physiological experiments indicate that the control of HFR1 protein abundance is important for a normal de-etiolation response.
Resumo:
SUMMARY When exposed to heat stress, plants display a particular set of cellular and molecular responses, such as chaperones expression, which are highly conserved in all organisms. In chapter 1, I studied the ability of heat shock genes to become transiently and abundantly induced under various temperature regimes. To this aim, I designed a highly sensitive heat-shock dependent conditional gene expression system in the moss Physcomitrella patens, using the soybean heatinducible promoter (hsp17.3B). Heat-induced expression of various reporter genes was over three orders of magnitude, in tight correlation with the intensity and duration of the heat treatments. By performing repeated heating/cooling cycles, a massive accumulation of recombinant proteins was obtained. Interestingly, the hsp17.3B promoter was also activated by specific organic chemicals. Thus, in chapter 2, I took advantage of the extreme sensitivity of this promoter to small temperature variations to further address the role of various natural and organic chemicals and develop a plant based-bioassay that can serve as an early warning indicator of toxicity by pollutants and heavy metals. A screen of several organic pollutants from textile and paper industry showed that chlorophenols as well as sulfonated anthraquinones elicited a heat shock like response at noninducing temperatures. Their effects were synergistically amplified by mild elevated temperatures. In contrast to standard methods of pollutant detection, this plant-based biosensor allowed to monitor early stress-responses, in correlation with long-term toxic effect, and to attribute effective toxicity thresholds for pollutants, in a context of varying environmental cues. In chapter 3, I deepened the study of the primary mechanism by which plants sense mild temperature variations and trigger a cellular signal leading to the heat shock response. In addition to the above described heat-inducible reporter line, I generated a P. patens transgenic line to measure, in vivo, variations of cytosolic calcium during heat treatment, and another line to monitor the role of protein unfolding in heat-shock sensing and signalling. The heat shock signalling pathway was found to be triggered by the plasma membrane, where temperature up shift specifically induced the transient opening of a putative high afimity calcium channel. The calcium influx triggered a signalling cascade leading to the activation of the heat shock genes, independently on the presence of misfolded proteins in the cytoplasm. These results strongly suggest that changes in the fluidity of the plasma membrane are the primary trigger of the heatshocksignalling pathway in plants. The present thesis contributes to the understanding of the basic mechanism by which plants perceive and respond to heat and chemical stresses. This may contribute to developing appropriate better strategies to enhance plant productivity under the increasingly stressful environment of global warming. RÉSUME Les plantes exposées à des températures élevées déclenchent rapidement des réponses cellulaires qui conduisent à l'induction de gènes codant pour les heat shock proteins (HSPs). En fonction de la durée d'exposition et de la vitesse à laquelle la température augmente, les HSPs sont fortement et transitoirement induites. Dans le premier chapitre, cette caractéristique aété utilisée pour développer un système inductible d'expression de gènes dans la mousse Physcomitrella patens. En utilisant plusieurs gènes rapporteurs, j'ai montré que le promoteur du gène hsp17.3B du Soja est activé d'une manière. homogène dans tous les tissus de la mousse proportionnellement à l'intensité du heat shock physiologique appliqué. Un très fort taux de protéines recombinantes peut ainsi être produit en réalisant plusieurs cycles induction/recovery. De plus, ce promoteur peut également être activé par des composés organiques, tels que les composés anti-inflammatoires, ce qui constitue une bonne alternative à l'induction par la chaleur. Les HSPs sont induites pour remédier aux dommages cellulaires qui surviennent. Étant donné que le promoteur hsp17.3B est très sensible à des petites augmentations de température ainsi qu'à des composés chimiques, j'ai utilisé les lignées développées dans le chapitre 1 pour identifier des polluants qui déclenchent une réaction de défense impliquant les HSPs. Après un criblage de plusieurs composés, les chlorophénols et les antraquinones sulfonés ont été identifiés comme étant activateurs du promoteur de stress. La détection de leurs effets a été réalisée seulement après quelques heures d'exposition et corrèle parfaitement avec les effets toxiques détectés après de longues périodes d'exposition. Les produits identifiés montrent aussi un effet synergique avec la température, ce qui fait du biosensor développé dans ce chapitre un bon outil pour révéler les effets réels des polluants dans un environnement où les stress chimiques sont combinés aux stress abiotiques. Le troisième chapitre est consacré à l'étude des mécanismes précoces qui permettent aux plantes de percevoir la chaleur et ainsi de déclencher une cascade de signalisation spécifique qui aboutit à l'induction des gènes HSPs. J'ai généré deux nouvelles lignées afin de mesurer en temps réel les changements de concentrations du calcium cytosolique ainsi que l'état de dénaturation des protéines au cours du heat shock. Quand la fluidité de la membrane augmente après élévation de la température, elle semble induire l'ouverture d'un canal qui permet de faire entrer le calcium dans les cellules. Ce dernier initie une cascade de signalisation qui finit par activer la transcription des gènes HSPs indépendamment de la dénaturation de protéines cytoplasmiques. Les résultats présentés dans ce chapitre montrent que la perception de la chaleur se fait essentiellement au niveau de la membrane plasmique qui joue un rôle majeur dans la régulation des gènes HSPs. L'élucidation des mécanismes par lesquels les plantes perçoivent les signaux environnementaux est d'une grande utilité pour le développement de nouvelles stratégies afin d'améliorer la productivité des plantes soumises à des conditions extrêmes. La présente thèse contribue à décortiquer la voie de signalisation impliquée dans la réponse à la chaleur.
Resumo:
Systemic hypertension increases cardiac workload and subsequently induces signaling networks in heart that underlie myocyte growth (hypertrophic response) through expansion of sarcomeres with the aim to increase contractility. However, conditions of increased workload can induce both adaptive and maladaptive growth of heart muscle. Previous studies implicate two members of the AP-1 transcription factor family, junD and fra-1, in regulation of heart growth during hypertrophic response. In this study, we investigate the function of the AP-1 transcription factors, c-jun and c-fos, in heart growth. Using pressure overload-induced cardiac hypertrophy in mice and targeted deletion of Jun or Fos in cardiomyocytes, we show that c-jun is required for adaptive cardiac hypertrophy, while c-fos is dispensable in this context. c-jun promotes expression of sarcomere proteins and suppresses expression of extracellular matrix proteins. Capacity of cardiac muscle to contract depends on organization of principal thick and thin filaments, myosin and actin, within the sarcomere. In line with decreased expression of sarcomere-associated proteins, Jun-deficient cardiomyocytes present disarrangement of filaments in sarcomeres and actin cytoskeleton disorganization. Moreover, Jun-deficient hearts subjected to pressure overload display pronounced fibrosis and increased myocyte apoptosis finally resulting in dilated cardiomyopathy. In conclusion, c-jun but not c-fos is required to induce a transcriptional program aimed at adapting heart growth upon increased workload.
Resumo:
MCT2 is the predominant neuronal monocarboxylate transporter allowing lactate use as an alternative energy substrate. It is suggested that MCT2 is upregulated to meet enhanced energy demands after modifications in synaptic transmission. Brain-derived neurotrophic factor (BDNF), a promoter of synaptic plasticity, significantly increased MCT2 protein expression in cultured cortical neurons (as shown by immunocytochemistry and western blot) through a translational regulation at the synaptic level. Brain-derived neurotrophic factor can cause translational activation through different signaling pathways. Western blot analyses showed that p44/p42 mitogen-activated protein kinase (MAPK), Akt, and S6 were strongly phosphorylated on BDNF treatment. To determine by which signal transduction pathway(s) BDNF mediates its upregulation of MCT2 protein expression, the effect of specific inhibitors for p38 MAPK, phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK), p44/p42 MAPK (ERK), and Janus kinase 2 (JAK2) was evaluated. It could be observed that the BDNF-induced increase in MCT2 protein expression was almost completely blocked by all inhibitors, except for JAK2. These data indicate that BDNF induces an increase in neuronal MCT2 protein expression by a mechanism involving a concomitant stimulation of PI3K/Akt/mTOR/S6, p38 MAPK, and p44/p42 MAPK. Moreover, our observations suggest that changes in MCT2 expression could participate in the process of synaptic plasticity induced by BDNF.
Resumo:
PSIP1 (PC4 and SFRS1 interacting protein 1) encodes two splice variants: lens epithelium-derived growth factor or p75 (LEDGF/p75) and p52. PSIP1 gene products were shown to be involved in transcriptional regulation, affecting a plethora of cellular processes, including cell proliferation, cell survival, and stress response. Furthermore, LEDGF/p75 has implications for various diseases and infections, including autoimmunity, leukemia, embryo development, psoriasis, and human immunodeficiency virus integration. Here, we reported the first characterization of the PSIP1 promoter. Using 5' RNA ligase-mediated rapid amplification of cDNA ends, we identified novel transcription start sites in different cell types. Using a luciferase reporter system, we identified regulatory elements controlling the expression of LEDGF/p75 and p52. These include (i) minimal promoters (-112/+59 and +609/+781) that drive the basal expression of LEDGF/p75 and of the shorter splice variant p52, respectively; (ii) a sequence (+319/+397) that may control the ratio of LEDGF/p75 expression to p52 expression; and (iii) a strong enhancer (-320/-207) implicated in the modulation of LEDGF/p75 transcriptional activity. Computational, biochemical, and genetic approaches enabled us to identify the transcription factor Sp1 as a key modulator of the PSIP1 promoter, controlling LEDGF/p75 transcription through two binding sites at -72/-64 and -46/-36. Overall, our results provide initial data concerning LEDGF/p75 promoter regulation, giving new insights to further understand its biological function and opening the door for new therapeutic strategies in which LEDGF/p75 is involved.
Resumo:
Recent studies have led to the discovery of a mediator that acts as an endogenous counter-regulator of glucocorticoid action within the immune system. Isolated as a product of anterior pituitary cells, this protein was found to have the sequence of macrophage migration inhibitory factor (MIF), one of the first cytokine activities to be described. Macrophages and T cells release MIF in response both to various inflammatory stimuli and upon incubation with low concentrations of glucocorticoids. The glucocorticoid-induced secretion of MIF is tightly regulated and decreases at high, anti-inflammatory steroid concentrations. Once secreted, MIF "overrides" the anti-inflammatory and immunosuppressive effects of steroids on macrophage and T-cell cytokine production. The physiological role of MIF thus appears to be to counter-balance steroid inhibition of the inflammatory response. Anti-MIF antibodies fully protect animals from experimentally induced gram-negative or gram-positive septic shock, an effect that may be the result of the increased anti-inflammatory effects of glucocorticoids after neutralization of endogenous MIF. Anti-MIF therapeutic strategies are presently under development and may prove to be a means to modulate cytokine production in septic shock as well as in other inflammatory disease states.
Resumo:
Aggregating cell cultures prepared from fetal rat telencephalon express the two subunits [cerebellar soluble lectins (CSL) 1 and 2] of a soluble, mannose-specific endogenous lectin (CSL) in a development-dependent manner. Increased CSL synthesis was found at an early postmitotic stage as well as during the period of maximal myelination. Repetitive treatment of early cultures with epidermal growth factor (EGF, 3nM) caused a great stimulation of CSL biosynthesis. Immunocytochemical studies revealed particularly intense CSL-specific staining in small, EGF-responsive cells, presumably glial cells. Large quantities of CSL-immunoreactive material were found also in the extracellular space and on the external side of the plasma membrane, indicating abundant release of CSL. The present findings suggest that EGF or EGF-related factors in the brain are able to regulate the expression of an endogenous lectin, affecting brain ontogeny.
Resumo:
This article presents the post-delivery perceived stress inventory (PDPSI) and its psychometric properties. This inventory is unique in that it links the measurement of perceived stress to events experienced during and after delivery. A total of 235 French-speaking, primiparous mothers completed the PDPSI two days after their delivery. To evaluate the predictive validity of the PDPSI on anxiety and depression, participants also completed the EPDS and the STAI two days and six weeks postpartum. The exploratory analysis revealed a 16-item structure divided into five factors: F1: relationship with the child; F2: delivery; F3: fatigue after delivery; F4: breastfeeding; and F5: relationship with the caregivers. The PDPSI demonstrated good internal consistency. Moreover, confirmatory factor analysis produced excellent indices, indicating that the complexity of the PDPSI was taken into account and its fit to the sample. The discriminant analysis showed that the PDPSI was not sensitive to specific changes in the sample making the inventory generalizable to other populations. Predictive validity showed that the scale significantly predicted depression and anxiety in the early postpartum period as well as anxiety six weeks postpartum. Overall, the PDPSI showed excellent psychometric qualities, making it a useful tool for future research-evaluating interventions related to perceived stress during the postpartum period.
Resumo:
Tumor necrosis factor (TNF) alpha, interleukins (IL) 2, 4, 6, and 10, and IgG oligoclonal bands (IgG OB) in vitro production was assessed, after whole-blood stimulation with lipopolysaccharide or concanavalin A, in 61 patients presenting with relapsing-remitting, relapsing-progressive, or chronic progressive multiple sclerosis. Multiple sclerosis patients were receiving no treatment or azathioprine (AZA), cyclosporin, cyclophosphamide, subcutaneous interferon (IFN) beta 1 a, or corticosteroids (CST). Statistical correlations significantly showed that: (a) AZA lowers TNF-alpha (P = 0.002) and increases IL-4 production (P = 0.0024), and IFN-beta 1 a increases TNF-alpha and decreases IL-4 levels; (b) CST has a negative effect on TNF-alpha, IL-6, and IL-4 synthesis; and (c) AZA, IFN-beta 1 a, and CST diminish IgG OB synthesis (P = 0.001). Although our study of the dynamics of TNF-alpha, IL-2, IL-4, IL-6, and IL-10 in vitro production generally found no statistically significant correlations (partly explained by the limited number of values in the various groups), IL-6 was shown to drop during the periods surrounding relapse (P = 0.05) in the absence of treatment, while TNF-alpha (P = 0.04) and IL-6 (P < 0.05) dropped before exacerbation in the presence of AZA. In vitro production of TNF-alpha was closely and positively correlated with that of IL-6, independently of clinical features. The enhanced production of IL-10 detected before or at relapse with AZA and IFN-beta 1 a (trends) may interfere with initiation of the immune reaction and with the development of new CNS lesions. Some discrepancies with previously published results stress the difficulties in studying the state of stimulation of different populations of leukocytes by using a variety of in vitro stimuli and in establishing a correlation between mRNA studies and the amount of final or active protein produced.
Resumo:
OBJECTIVE: Insulin-like growth factor-I (IGF-I) is an important regulator of fetal growth and its bioavailability depends on insulin-like growth factor binding proteins (IGFBPs). Genes coding for IGF-I and IGFBP3 are polymorphic. We hypothesized that either amniotic fluid protein concentration at the beginning of the second trimester or genotype of one of these two genes could be predictive of abnormal fetal growth. STUDY DESIGN: Amniotic fluid samples (14-18 weeks of pregnancy) from 123 patients with appropriate for gestational age (AGA) fetuses, 39 patients with small for gestational age (SGA) fetuses and 34 patients with large for gestational age (LGA) were analyzed. Protein concentrations were evaluated by ELISA and gene polymorphisms by PCR. RESULTS: Amniotic fluid IGFBP3 concentrations were significantly higher in SGA compared to AGA group (P=0.030), and this was even more significant when adjusted to gestational age at the time of amniocentesis and other covariates (ANCOVA analysis: P=0.009). Genotypic distribution of IGF-I variable number of tandem repeats (VNTR) polymorphism was significantly different in SGA compared to AGA group (P=0.029). 19CA/20CA genotype frequency was threefold decreased in SGA compared to AGA group and the risk of SGA occurrence of this genotype was decreased accordingly: OR=0.289, 95%CI=0.1-0.9, P=0.032. Genotype distribution of IGFBP3(A-202C) polymorphism was similar in all three groups. CONCLUSIONS: High IGFBP3 concentrations in amniotic fluid at the beginning of the second trimester are associated with increased risks of SGA while 19CA/20CA genotype at IGF-I VNTR polymorphism is associated with reduced risks of SGA. Neither IGFBP3 concentrations, nor IGF-I/IGFBP3 polymorphisms are associated with modified risks of LGA.
Resumo:
This paper describes the development of an analytical technique for arsenic analyses that is based on genetically-modified bioreporter bacteria bearing a gene encoding for the production of a green fluorescent protein (gfp). Upon exposure to arsenic (in the aqueous form of arsenite), the bioreporter production of the fluorescent reporter molecule is monitored spectroscopically. We compared the response measured as a function of time and concentration by steady-state fluorimetry (SSF) to that measured by epi-fluorescent microscopy (EFM). SSF is a bulk technique; as such it inherently yields less information, whereas EFM monitors the response of many individual cells simultaneously and data can be processed in terms of population averages or subpopulations. For the bioreporter strain used here, as well as for the literature we cite, the two techniques exhibit similar performance characteristics. The results presented here show that the EFM technique can compete with SSF and shows substantially more promise for future improvement; it is a matter of research interest to develop optimized methods of EFM image analysis and statistical data treatment. EFM is a conduit for understanding the dynamics of individual cell response vs. population response, which is not only a matter of research interest, but is also promising in the practical terms of developing micro-scale analysis.
Resumo:
Predictive species distribution modelling (SDM) has become an essential tool in biodiversity conservation and management. The choice of grain size (resolution) of environmental layers used in modelling is one important factor that may affect predictions. We applied 10 distinct modelling techniques to presence-only data for 50 species in five different regions, to test whether: (1) a 10-fold coarsening of resolution affects predictive performance of SDMs, and (2) any observed effects are dependent on the type of region, modelling technique, or species considered. Results show that a 10 times change in grain size does not severely affect predictions from species distribution models. The overall trend is towards degradation of model performance, but improvement can also be observed. Changing grain size does not equally affect models across regions, techniques, and species types. The strongest effect is on regions and species types, with tree species in the data sets (regions) with highest locational accuracy being most affected. Changing grain size had little influence on the ranking of techniques: boosted regression trees remain best at both resolutions. The number of occurrences used for model training had an important effect, with larger sample sizes resulting in better models, which tended to be more sensitive to grain. Effect of grain change was only noticeable for models reaching sufficient performance and/or with initial data that have an intrinsic error smaller than the coarser grain size.