255 resultados para Myelin Proteins
Resumo:
BACKGROUND: Gene duplication is the primary source of new genes with novel or altered functions. It is known that duplicates may obtain these new functional roles by evolving divergent expression patterns and/or protein functions after the duplication event. Here, using yeast (Saccharomyces cerevisiae) as a model organism, we investigate a previously little considered mode for the functional diversification of duplicate genes: subcellular adaptation of encoded proteins. RESULTS: We show that for 24-37% of duplicate gene pairs derived from the S. cerevisiae whole-genome duplication event, the two members of the pair encode proteins that localize to distinct subcellular compartments. The propensity of yeast duplicate genes to evolve new localization patterns depends to a large extent on the biological function of their progenitor genes. Proteins involved in processes with a wider subcellular distribution (for example, catabolism) frequently evolved new protein localization patterns after duplication, whereas duplicate proteins limited to a smaller number of organelles (for example, highly expressed biosynthesis/housekeeping proteins with a slow rate of evolution) rarely relocate within the cell. Paralogous proteins evolved divergent localization patterns by partitioning of ancestral localizations ('sublocalization'), but probably more frequently by relocalization to new compartments ('neolocalization'). We show that such subcellular reprogramming may occur through selectively driven substitutions in protein targeting sequences. Notably, our data also reveal that relocated proteins functionally adapted to their new subcellular environments and evolved new functional roles through changes of their physico-chemical properties, expression levels, and interaction partners. CONCLUSION: We conclude that protein subcellular adaptation represents a common mechanism for the functional diversification of duplicate genes.
Resumo:
BACKGROUND: Evolutionary analysis may serve as a useful approach to identify and characterize host defense and viral proteins involved in genetic conflicts. We analyzed patterns of coding sequence evolution of genes with known (TRIM5alpha and APOBEC3G) or suspected (TRIM19/PML) roles in virus restriction, or in viral pathogenesis (PPIA, encoding Cyclophilin A), in the same set of human and non-human primate species. RESULTS AND CONCLUSION: This analysis revealed previously unidentified clusters of positively selected sites in APOBEC3G and TRIM5alpha that may delineate new virus-interaction domains. In contrast, our evolutionary analyses suggest that PPIA is not under diversifying selection in primates, consistent with the interaction of Cyclophilin A being limited to the HIV-1M/SIVcpz lineage. The strong sequence conservation of the TRIM19/PML sequences among primates suggests that this gene does not play a role in antiretroviral defense.
Resumo:
To study inflammatory reactions occurring in relation to demyelination, aggregating rat brain cell cultures were subjected to three different demyelinating insults, i.e., (i) lysophosphatidylcholine (LPC), (ii) interferon-gamma combined with lipopolysaccharide (IFN-gamma+LPS), and (iii) anti-MOG antibodies plus complement (alpha-MOG+C). Demyelination was assessed by measuring the expression of myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG), and the activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP). The accompanying inflammatory reactions were examined by the quantification of microglia-specific staining, by immunostaining for glial fibrillary acidic protein (GFAP), and by measuring the mRNA expression of a panel of inflammation-related genes. It was found that all three demyelinating insults decreased the expression of MBP and MOG, and induced microglial reactivity. LPC and alpha-MOG+C, but not IFN-gamma+LPS, decreased CNP activity; they also caused the appearance of macrophagic microglia, and increased GFAP staining indicating astrogliosis. LPC affected also the integrity of neurons and astrocytes. LPC and IFN-gamma+LPS upregulated the expression of the inflammation-related genes IL-6, TNF-alpha, Ccl5, Cxcl1, and iNOS, although to different degrees. Other inflammatory markers were upregulated by only one of the three insults, e.g., Cxcl2 by LPC; IL-1beta and IL-15 by IFN-gamma+LPS; and IFN-gamma by alpha-MOG+C. These findings indicate that each of the three demyelinating insults caused distinct patterns of demyelination and inflammatory reactivity, and that of the demyelinating agents tested only LPC exhibited general toxicity.
Resumo:
Viruses have evolved strategies to overcome the antiviral effects of the host at different levels. Besides specific defence mechanisms, the host responds to viral infection via the interferon pathway and also by RNA interference (RNAi). However, several viruses have been identified that suppress RNAi. We addressed the question of whether hepatitis C virus (HCV) suppresses RNAi, using cell lines constitutively expressing green fluorescent protein (GFP) and inducibly expressing HCV proteins. It was found that short interfering RNA-mediated GFP gene silencing was inhibited when the entire HCV polyprotein was expressed. Further studies showed that HCV structural proteins, and in particular envelope protein 2 (E2), were responsible for this inhibition. Co-precipitation assays demonstrated that E2 bound to Argonaute-2 (Ago-2), a member of the RNA-induced silencing complex, RISC. Thus, HCV E2 that interacts with Ago-2 is able to suppress RNAi.
Resumo:
Spatial regulation of tyrosine phosphorylation is important for many aspects of cell biology. However, phosphotyrosine accounts for less than 1% of all phosphorylated substrates, and it is typically a very transient event in vivo. These factors complicate the identification of key tyrosine kinase substrates, especially in the context of their extraordinary spatial organization. Here, we describe an approach to identify tyrosine kinase substrates based on their subcellular distribution from within cells. This method uses an unnatural amino acid-modified Src homology 2 (SH2) domain that is expressed within cells and can covalently trap phosphotyrosine proteins on exposure to light. This SH2 domain-based photoprobe was targeted to cellular structures, such as the actin cytoskeleton, mitochondria, and cellular membranes, to capture tyrosine kinase substrates unique to each cellular region. We demonstrate that RhoA, one of the proteins associated with actin, can be phosphorylated on two tyrosine residues within the switch regions, suggesting that phosphorylation of these residues might modulate RhoA signaling to the actin cytoskeleton. We conclude that expression of SH2 domains within cellular compartments that are capable of covalent phototrapping can reveal the spatial organization of tyrosine kinase substrates that are likely to be important for the regulation of subcellular structures.
Resumo:
The pleiotropic cyclic nucleotide cAMP is the primary second messenger responsible for autonomic regulation of cardiac inotropy, chronotropy, and lusitropy. Under conditions of prolonged catecholaminergic stimulation, cAMP also contributes to the induction of both cardiac myocyte hypertrophy and apoptosis. The formation of localized, multiprotein complexes that contain different combinations of cAMP effectors and regulatory enzymes provides the architectural infrastructure for the specialization of the cAMP signaling network. Scaffolds that bind protein kinase A are called "A-kinase anchoring proteins" (AKAPs). In this review, we discuss recent advances in our understanding of how PKA is compartmentalized within the cardiac myocyte by AKAPs and how AKAP complexes modulate cardiac function in both health and disease.
Resumo:
The D2-protein is a high molecular weight protein involved in interneuronal adhesion. The concentration of D2-protein was measured both in aggregates of fetal rat telencephalic cells cultured in a chemically defined medium and in developing forebrain. Both the concentration of the D2-protein and the degree of sialylation were changed in the cultures in parallel with the corresponding values obtained from postnatal forebrain. In the cultures the highest specific concentration of D2-protein was observed after 12 days in culture. This value was 2.7 times higher than the average value of adult rat forebrain. Antibodies to D2-protein have previously been shown to inhibit fasciculation of neuritic fibers extending from cultured explants of sympathetic ganglia. We investigated the effect of such antibodies on the differentiation of aggregating telencephalic cells. By adding surplus antibodies to the cultures from day 11 to day 16 we were able to decrease the specific concentration of D2-protein on the neurons by 53% measured at day 19. The decrease was not compensated fully even after further 10 days in the culture. Although the concentration of D2-protein was decreased during the period of synaptogenesis no change was found in the specific concentration of a marker of mature synapses, the D3-protein. Thus, in this culture system synaptogenesis could proceed to an unimpaired extent in the presence of a decreased concentration of a putatively involved adhesion molecule. However, the specific concentration of two markers of myelination, 2',3'-cyclic nucleotide 3'-phosphodiesterase and myelin basic protein, were both increased, suggesting an antibody-induced stimulation of myelination in the cultured aggregates.
Resumo:
BACKGROUND: Membrane-bound organelles are a defining feature of eukaryotic cells, and play a central role in most of their fundamental processes. The Rab G proteins are the single largest family of proteins that participate in the traffic between organelles, with 66 Rabs encoded in the human genome. Rabs direct the organelle-specific recruitment of vesicle tethering factors, motor proteins, and regulators of membrane traffic. Each organelle or vesicle class is typically associated with one or more Rab, with the Rabs present in a particular cell reflecting that cell's complement of organelles and trafficking routes. RESULTS: Through iterative use of hidden Markov models and tree building, we classified Rabs across the eukaryotic kingdom to provide the most comprehensive view of Rab evolution obtained to date. A strikingly large repertoire of at least 20 Rabs appears to have been present in the last eukaryotic common ancestor (LECA), consistent with the 'complexity early' view of eukaryotic evolution. We were able to place these Rabs into six supergroups, giving a deep view into eukaryotic prehistory. CONCLUSIONS: Tracing the fate of the LECA Rabs revealed extensive losses with many extant eukaryotes having fewer Rabs, and none having the full complement. We found that other Rabs have expanded and diversified, including a large expansion at the dawn of metazoans, which could be followed to provide an account of the evolutionary history of all human Rabs. Some Rab changes could be correlated with differences in cellular organization, and the relative lack of variation in other families of membrane-traffic proteins suggests that it is the changes in Rabs that primarily underlies the variation in organelles between species and cell types.
Resumo:
Bordetella pertussis is the bacterial agent of whooping cough in humans. Under iron-limiting conditions, it produces the siderophore alcaligin. Released to the extracellular environment, alcaligin chelates iron, which is then taken up as a ferric alcaligin complex via the FauA outer membrane transporter. FauA belongs to a family of TonB-dependent outer membrane transporters that function using energy derived from the proton motive force. Using an in-house protocol for membrane-protein expression, purification and crystallization, FauA was crystallized in its apo form together with three other TonB-dependent transporters from different organisms. Here, the protocol used to study FauA is described and its three-dimensional structure determined at 2.3 A resolution is discussed.
Resumo:
Fas(Apo-1/CD95), a receptor belonging to the tumor necrosis factor receptor family, induces apoptosis when triggered by Fas ligand. Upon its activation, the cytoplasmic domain of Fas binds several proteins which transmit the death signal. We used the yeast two-hybrid screen to isolate Fas-associated proteins. Here we report that the ubiquitin-conjugating enzyme UBC9 binds to Fas at the interface between the death domain and the membrane-proximal region of Fas. This interaction is also seen in vivo. UBC9 transiently expressed in HeLa cells bound to the co-expressed cytoplasmic segment of Fas. FAF1, a Fas-associated protein that potentiates apoptosis (Chu et al. (1996) Proc. Natl. Acad. Sci. USA 92, 11894-11898), was found to contain sequences similar to ubiquitin. These results suggest that proteins related to the ubiquitination pathway may modulate the Fas signaling pathway.
Resumo:
In silico screening has become a valuable tool in drug design, but some drug targets represent real challenges for docking algorithms. This is especially true for metalloproteins, whose interactions with ligands are difficult to parametrize. Our docking algorithm, EADock, is based on the CHARMM force field, which assures a physically sound scoring function and a good transferability to a wide range of systems, but also exhibits difficulties in case of some metalloproteins. Here, we consider the therapeutically important case of heme proteins featuring an iron core at the active site. Using a standard docking protocol, where the iron-ligand interaction is underestimated, we obtained a success rate of 28% for a test set of 50 heme-containing complexes with iron-ligand contact. By introducing Morse-like metal binding potentials (MMBP), which are fitted to reproduce density functional theory calculations, we are able to increase the success rate to 62%. The remaining failures are mainly due to specific ligand-water interactions in the X-ray structures. Testing of the MMBP on a second data set of non iron binders (14 cases) demonstrates that they do not introduce a spurious bias towards metal binding, which suggests that they may reliably be used also for cross-docking studies.
Resumo:
It is often supposed that a protein's rate of evolution and its amino acid content are determined by the function and anatomy of the protein. Here we examine an alternative possibility, namely that the requirement to specify in the unprocessed RNA, in the vicinity of intron-exon boundaries, information necessary for removal of introns (e.g., exonic splice enhancers) affects both amino acid usage and rates of protein evolution. We find that the majority of amino acids show skewed usage near intron-exon boundaries, and that differences in the trends for the 2-fold and 4-fold blocks of both arginine and leucine show this to be owing to effects mediated at the nucleotide level. More specifically, there is a robust relationship between the extent to which an amino acid is preferred/avoided near boundaries and its enrichment/paucity in splice enhancers. As might then be expected, the rate of evolution is lowest near intron-exon boundaries, at least in part owing to splice enhancers, such that domains flanking intron-exon junctions evolve on average at under half the rate of exon centres from the same gene. In contrast, the rate of evolution of intronless retrogenes is highest near the domains where intron-exon junctions previously resided. The proportion of sequence near intron-exon boundaries is one of the stronger predictors of a protein's rate of evolution in mammals yet described. We conclude that after intron insertion selection favours modification of amino acid content near intron-exon junctions, so as to enable efficient intron removal, these changes then being subject to strong purifying selection even if nonoptimal for protein function. Thus there exists a strong force operating on protein evolution in mammals that is not explained directly in terms of the biology of the protein.