356 resultados para Membrane-anchored tumor necrosis factor
Resumo:
B cell maturation is a very selective process that requires finely tuned differentiation and survival signals. B cell activation factor from the TNF family (BAFF) is a TNF family member that binds to B cells and potentiates B cell receptor (BCR)-mediated proliferation. A role for BAFF in B cell survival was suggested by the observation of reduced peripheral B cell numbers in mice treated with reagents blocking BAFF, and high Bcl-2 levels detected in B cells from BAFF transgenic (Tg) mice. We tested in vitro the survival effect of BAFF on lymphocytes derived from primary and secondary lymphoid organs. BAFF induced survival of a subset of splenic immature B cells, referred to as transitional type 2 (T2) B cells. BAFF treatment allowed T2 B cells to survive and differentiate into mature B cells in response to signals through the BCR. The T2 and the marginal zone (MZ) B cell compartments were particularly enlarged in BAFF Tg mice. Immature transitional B cells are targets for negative selection, a feature thought to promote self-tolerance. These findings support a model in which excessive BAFF-mediated survival of peripheral immature B cells contributes to the emergence and maturation of autoreactive B cells, skewed towards the MZ compartment. This work provides new clues on mechanisms regulating B cell maturation and tolerance.
Resumo:
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family with potent apoptosis-inducing properties in tumor cells. In particular, TRAIL strongly synergizes with conventional chemotherapeutic drugs to induce tumor cell death. Thus, TRAIL has been proposed as a promising future cancer therapy. Little, however, is known regarding what the role of TRAIL is in normal untransformed cells and whether therapeutic administration of TRAIL, alone or in combination with other apoptotic triggers, may cause tissue damage. In this study, we investigated the role of TRAIL in Fas-induced (CD95/Apo-1-induced) hepatocyte apoptosis and liver damage. While TRAIL alone failed to induce apoptosis in isolated murine hepatocytes, it strongly amplified Fas-induced cell death. Importantly, endogenous TRAIL was found to critically regulate anti-Fas antibody-induced hepatocyte apoptosis, liver damage, and associated lethality in vivo. TRAIL enhanced anti-Fas-induced hepatocyte apoptosis through the activation of JNK and its downstream substrate, the proapoptotic Bcl-2 homolog Bim. Consistently, TRAIL- and Bim-deficient mice and wild-type mice treated with a JNK inhibitor were protected against anti-Fas-induced liver damage. We conclude that TRAIL and Bim are important response modifiers of hepatocyte apoptosis and identify liver damage and lethality as a possible risk of TRAIL-based tumor therapy.
Resumo:
Graft-versus-host disease (GVHD) is the main complication after allogeneic bone marrow transplantation. Although the tissue damage and subsequent patient mortality are clearly dependent on T lymphocytes present in the grafted inoculum, the lethal effector molecules are unknown. Here, we show that acute lethal GVHD, induced by the transfer of splenocytes from C57BL/6 mice into sensitive BALB/c recipients, is dependent on both perforin and Fas ligand (FasL)-mediated lytic pathways. When spleen cells from mutant mice lacking both effector molecules were transferred to sublethally irradiated allogeneic recipients, mice survived. Delayed mortality was observed with grafted cells deficient in only one lytic mediator. In contrast, protection from lethal acute GVHD in resistant mice was exclusively perforin dependent. Perforin-FasL-deficient T cells failed to lyse most target cells in vitro. However, they still efficiently killed tumor necrosis factor alpha-sensitive fibroblasts, demonstrating that cytotoxic T cells possess a third lytic pathway.
Resumo:
BACKGROUND & AIMS: Regulation of gene expression in the follicle-associated epithelium (FAE) over Peyer's patches is largely unknown. CCL20, a chemokine that recruits immature dendritic cells, is one of the few FAE-specific markers described so far. Lymphotoxin beta (LTalpha1beta2) expressed on the membrane of immune cells triggers CCL20 expression in enterocytes. In this study, we measured expression profiles of LTalpha1beta2-treated intestinal epithelial cells and selected CCL20 -coregulated genes to identify new FAE markers. METHODS: Genomic profiles of T84 and Caco-2 cell lines treated with either LTalpha1beta2, flagellin, or tumor necrosis factor alpha were measured using the Affymetrix GeneChip U133A. Clustering analysis was used to select CCL20 -coregulated genes, and laser dissection microscopy and real-time polymerase chain reaction on human biopsy specimens was used to assess the expression of the selected markers. RESULTS: Applying a 2-way analysis of variance, we identified regulated genes upon the different treatments. A subset of genes involved in inflammation and related to the nuclear factor kappaB pathway was coregulated with CCL20 . Among these genes, the antiapoptotic factor TNFAIP3 was highly expressed in the FAE. CCL23 , which was not coregulated in vitro with CCL20 , was also specifically expressed in the FAE. CONCLUSIONS: We have identified 2 novel human FAE specifically expressed genes. Most of the CCL20 -coregulated genes did not show FAE-specific expression, suggesting that other signaling pathways are critical to modulate FAE-specific gene expression.
Resumo:
Engagement of TNF receptor 1 by TNFalpha activates the transcription factor NF-kappaB but can also induce apoptosis. Here we show that upon TNFalpha binding, TNFR1 translocates to cholesterol- and sphingolipid-enriched membrane microdomains, termed lipid rafts, where it associates with the Ser/Thr kinase RIP and the adaptor proteins TRADD and TRAF2, forming a signaling complex. In lipid rafts, TNFR1 and RIP are ubiquitylated. Furthermore, we provide evidence that translocation to lipid rafts precedes ubiquitylation, which leads to the degradation via the proteasome pathway. Interfering with lipid raft organization not only abolishes ubiquitylation but switches TNFalpha signaling from NF-kappaB activation to apoptosis. We suggest that lipid rafts are crucial for the outcome of TNFalpha-activated signaling pathways.
Resumo:
Fas(Apo-1/CD95), a receptor belonging to the tumor necrosis factor receptor family, induces apoptosis when triggered by Fas ligand. Upon its activation, the cytoplasmic domain of Fas binds several proteins which transmit the death signal. We used the yeast two-hybrid screen to isolate Fas-associated proteins. Here we report that the ubiquitin-conjugating enzyme UBC9 binds to Fas at the interface between the death domain and the membrane-proximal region of Fas. This interaction is also seen in vivo. UBC9 transiently expressed in HeLa cells bound to the co-expressed cytoplasmic segment of Fas. FAF1, a Fas-associated protein that potentiates apoptosis (Chu et al. (1996) Proc. Natl. Acad. Sci. USA 92, 11894-11898), was found to contain sequences similar to ubiquitin. These results suggest that proteins related to the ubiquitination pathway may modulate the Fas signaling pathway.
Resumo:
Death receptors, such as Fas and tumor necrosis factor-related apoptosis-inducing ligand receptors, recruit Fas-associated death domain and pro-caspase-8 homodimers, which are then autoproteolytically activated. Active caspase-8 is released into the cytoplasm, where it cleaves various proteins including pro-caspase-3, resulting in apoptosis. The cellular Fas-associated death domain-like interleukin-1-beta-converting enzyme-inhibitory protein long form (FLIP(L)), a structural homologue of caspase-8 lacking caspase activity because of several mutations in the active site, is a potent inhibitor of death receptor-induced apoptosis. FLIP(L) is proposed to block caspase-8 activity by forming a proteolytically inactive heterodimer with caspase-8. In contrast, we propose that FLIP(L)-bound caspase-8 is an active protease. Upon heterocomplex formation, a limited caspase-8 autoprocessing occurs resulting in the generation of the p43/41 and the p12 subunits. This partially processed form but also the non-cleaved FLIP(L)-caspase-8 heterocomplex are proteolytically active because they both bind synthetic substrates efficiently. Moreover, FLIP(L) expression favors receptor-interacting kinase (RIP) processing within the Fas-signaling complex. We propose that FLIP(L) inhibits caspase-8 release-dependent pro-apoptotic signals, whereas the single, membrane-restricted active site of the FLIP(L)-caspase-8 heterocomplex is proteolytically active and acts on local substrates such as RIP.
Resumo:
BAFF (BLyS, TALL-1, THANK, zTNF4) is a member of the TNF superfamily that specifically regulates B lymphocyte proliferation and survival. Mice transgenic (Tg) for BAFF develop an autoimmune condition similar to systemic lupus erythematosus. We now demonstrate that BAFF Tg mice, as they age, develop a secondary pathology reminiscent of Sjögren's syndrome (SS), which is manifested by severe sialadenitis, decreased saliva production, and destruction of submaxillary glands. In humans, SS also correlates with elevated levels of circulating BAFF, as well as a dramatic upregulation of BAFF expression in inflamed salivary glands. A likely explanation for disease in BAFF Tg mice is excessive survival signals to autoreactive B cells, possibly as they pass through a critical tolerance checkpoint while maturing in the spleen. The marginal zone (MZ) B cell compartment, one of the enlarged B cell subsets in the spleen of BAFF Tg mice, is a potential reservoir of autoreactive B cells. Interestingly, B cells with an MZ-like phenotype infiltrate the salivary glands of BAFF Tg mice, suggesting that cells of this compartment potentially participate in tissue damage in SS and possibly other autoimmune diseases. We conclude that altered B cell differentiation and tolerance induced by excess BAFF may be central to SS pathogenesis.
Resumo:
The B cell-activating factor from the tumor necrosis factor family (BAFF) is an important regulator of B cell immunity. Recently, we demonstrated that recombinant BAFF also provides a co-stimulatory signal to T cells. Here, we studied expression of BAFF in peripheral blood leukocytes and correlated this expression with BAFF T cell co-stimulatory function. BAFF is produced by antigen-presenting cells (APC). Blood dendritic cells (DC) as well as DC differentiated in vitro from monocytes or CD34+ stem cells express BAFF mRNA. Exposure to bacterial products further up-regulates BAFF production in these cells. A low level of BAFF transcription, up-regulated upon TCR stimulation, was also detected in T cells. Functionally, blockade of endogenous BAFF produced by APC and, to a lesser extent, by T cells inhibits T cell activation. Altogether, this indicates that BAFF may regulate T cell immunity during APC-T cell interactions and as an autocrine factor once T cells have detached from the APC.
Resumo:
Cell death is achieved by two fundamentally different mechanisms: apoptosis and necrosis. Apoptosis is dependent on caspase activation, whereas the caspase-independent necrotic signaling pathway remains largely uncharacterized. We show here that Fas kills activated primary T cells efficiently in the absence of active caspases, which results in necrotic morphological changes and late mitochondrial damage but no cytochrome c release. This Fas ligand-induced caspase-independent death is absent in T cells that are deficient in either Fas-associated death domain (FADD) or receptor-interacting protein (RIP). RIP is also required for necrotic death induced by tumor necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL). In contrast to its role in nuclear factor kappa B activation, RIP requires its own kinase activity for death signaling. Thus, Fas, TRAIL and TNF receptors can initiate cell death by two alternative pathways, one relying on caspase-8 and the other dependent on the kinase RIP.
Resumo:
The TNF ligand family member BAFF (B cell activating factor belonging to the TNF family, also called Blys, TALL-1, zTNF-4, or THANK) is an important survival factor for B cells [corrected]. In this study, we show that BAFF is able to regulate T cell activation. rBAFF induced responses (thymidine incorporation and cytokine secretion) of T cells, suboptimally stimulated through their TCR. BAFF activity was observed on naive, as well as on effector/memory T cells (both CD4+ and CD8+ subsets), indicating that BAFF has a wide function on T cell responses. Analysis of the signal transduced by BAFF into T cells shows that BAFF has no obvious effect on T cell survival upon activation, but is able to deliver a complete costimulation signal into T cells. Indeed, BAFF is sufficient to induce IL-2 secretion and T cell division, when added to an anti-TCR stimulation. This highlights some differences in the BAFF signaling pathway in T and B cells. In conclusion, our results indicate that BAFF may play a role in the development of T cell responses, in addition to its role in B cell homeostasis.
Resumo:
The regulation of the immune system is controlled by many cell surface receptors. A prominent representative is the 'molecular switch' HVEM (herpes virus entry mediator) that can activate either proinflammatory or inhibitory signaling pathways. HVEM ligands belong to two distinct families: the TNF-related cytokines LIGHT and lymphotoxin-α, and the Ig-related membrane proteins BTLA and CD160. HVEM and its ligands have been involved in the pathogenesis of various autoimmune and inflammatory diseases, but recent reports indicate that this network may also be involved in tumor progression and resistance to immune response. Here we summarize the recent advances made regarding the knowledge on HVEM and its ligands in cancer cells, and their potential roles in tumor progression and escape to immune responses. Blockade or enhancement of these pathways may help improving cancer therapy.
Resumo:
TNF receptor family members fused to the constant domain of immunoglobulin G have been widely used as immunoadhesins in basic in vitro and in vivo research and in some clinical applications. In this study, we assemble soluble, high avidity chimeric receptors on a pentameric scaffold derived from the coiled-coil domain of cartilage oligomeric matrix protein (COMP). The affinity of Fas and CD40 (but not TNFR-1 and TRAIL-R2) to their ligands is increased by fusion to COMP, when compared to the respective Fc chimeras. In functional assays, Fas:COMP was at least 20-fold more active than Fas:Fc at inhibiting the action of sFasL, and CD40:COMP could block CD40L-mediated proliferation of B cells, whereas CD40:Fc could not. In conclusion, members of the TNF receptor family can display high specificity and excellent avidity for their ligands if they are adequately multimerized.
Resumo:
A novel function of NF-kappaB in the development of most ectodermal appendages, including two types of murine pelage hair follicles, was detected in a mouse model with suppressed NF-kappaB activity (c(IkappaBalphaDeltaN)). However, the developmental processes regulated by NF-kappaB in hair follicles has remained unknown. Furthermore, the similarity between the phenotypes of c(IkappaBADeltaN) mice and mice deficient in Eda A1 (tabby) or its receptor EdaR (downless) raised the issue of whether in vivo NF-kappaB regulates or is regulated by these novel TNF family members. We now demonstrate that epidermal NF-kappaB activity is first observed in placodes of primary guard hair follicles at day E14.5, and that in vivo NF-kappaB signalling is activated downstream of Eda A1 and EdaR. Importantly, ectopic signals which activate NF-kappaB can also stimulate guard hair placode formation, suggesting a crucial role for NF-kappaB in placode development. In downless and c(IkappaBalphaDeltaN) mice, placodes start to develop, but rapidly abort in the absence of EdaR/NF-kappaB signalling. We show that NF-kappaB activation is essential for induction of Shh and cyclin D1 expression and subsequent placode down growth. However, cyclin D1 induction appears to be indirectly regulated by NF-kappaB, probably via Shh and Wnt. The strongly decreased number of hair follicles observed in c(IkappaBalphaDeltaN) mice compared with tabby mice, indicates that additional signals, such as TROY, must regulate NF-kappaB activity in specific hair follicle subtypes.
Resumo:
Members of the tumor necrosis factor (TNF) family play key roles in the regulation of inflammation, immune responses and tissue homeostasis. Here we describe the identification of the chicken homologue of mammalian B cell activating factor of the TNF family (BAFF/BLyS). By searching a chicken EST database we identified two overlapping cDNA clones that code for the entire open reading frame of chicken BAFF (chBAFF), which contains a predicted transmembrane domain and a putative furin protease cleavage site like its mammalian counterparts. The amino acid identity between soluble chicken and human BAFF is 76%, considerably higher than for most other known cytokines. The chBAFF gene is most strongly expressed in the bursa of Fabricius. Soluble recombinant chBAFF produced by human 293T cells interacted with the mammalian cell-surface receptors TACI, BCMA and BAFF-R. It bound to chicken B cells, but not to other lymphocytes, and it promoted the survival of splenic chicken B cells in culture. Furthermore, bacterially expressed chBAFF induced the selective expansion of B cells in the spleen and cecal tonsils when administered to young chicks. Our results suggest that like its mammalian counterpart, chBAFF plays an important role in survival and/or proliferation of chicken B cells.