177 resultados para MULTIDRUG-RESISTANCE
Resumo:
Role of GLP-1 and GIP in beta cell compensatory responses to beta cell attack and insulin resistance were examined in C57BL/6 mice lacking functional receptors for GLP-1 and GIP. Mice were treated with multiple low dose streptozotocin or hydrocortisone. Islet parameters were assessed by immunohistochemistry and hormone measurements were determined by specific enzyme linked immunoassays. Wild-type streptozotocin controls exhibited severe diabetes, irregularly shaped islets with lymphocytic infiltration, decreased Ki67/TUNEL ratio with decreased beta cell and increased alpha cell areas. GLP-1 and GIP were co-expressed with glucagon and numbers of alpha cells mainly expressing GLP-1 were increased. In contrast, hydrocortisone treatment and induction of insulin resistance increased islet numbers and area, with enhanced beta cell replication, elevated mass of beta and alpha cells, together with co-expression of GLP-1 and GIP with glucagon in islets. The metabolic responses to streptozotocin in GLP-1RKO and GIPRKO mice were broadly similar to C57BL/6 controls, although decreases in islet numbers and size were more severe. In contrast, both groups of mice lacking functional incretin receptors displayed substantially impaired islet adaptations to insulin resistance induced by hydrocortisone, including marked curtailment of expansion of islet area, beta cell mass and islet number. Our observations cannot be explained by simple changes in circulating incretin concentrations, suggesting that intra-islet GLP-1 and GIP make a significant contribution to islet adaptation, particularly expansion of beta cell mass and compensatory islet compensation to hydrocortisone and insulin resistance.
Resumo:
Imatinib (Glivec®) has transformed the treatment and short-term prognosis of chronic myeloid leukaemia (CML) and gastro-intestinal stromal tumour (GIST). However, the treatment must be taken indefinitely, it is not devoid of inconvenience and toxicity. Moreover, resistance or escape from disease control occur in a significant number of patients. Imatinib is a substrate of the cytochromes P450 CYP3A4/5 and of the multidrug transporter P glycoprotein (product of the MDR1 gene). Considering the large inter-individual differences in the expression and function of those systems, the disposition and clinical activity of imatinib can be expected to vary widely among patients, calling for dosage individualisation. The aim of this exploratory study was to determine the average pharmacokinetic parameters characterizing the disposition of imatinib in the target population, to assess their inter-individual variability, and to identify influential factors affecting them. A total of 321 plasma concentrations, taken at various sampling times after latest dose, were measured in 59 patients receiving Glivec® at diverse regimens, using a validated chromatographic method (HPLC-UV) developed for this study. The results were analysed by non-linear mixed effect modelling (NONMEM). A one- compartment model with first-order absorption appeared appropriate to describe the data, with an average apparent clearance of 12.4 l/h, a distribution volume of 268 l and an absorption constant of 0.47 h-1. The clearance was affected by body weight, age and sex. No influences of interacting drugs were found. DNA samples were used for pharmacogenetic explorations. The MDR1 polymorphism 3435C>T appears to affect the disposition of imatinib. Large inter-individual variability remained unexplained by the demographic covariates considered, both on clearance (40%) and distribution volume (71%). Together with intra-patient variability (34%), this translates into an 8-fold width of the 90%-prediction interval of plasma concentrations expected under a fixed dosing regimen ! This is a strong argument to further investigate the possible usefulness of a therapeutic drug monitoring programme for imatinib. It may help to individualise the dosing regimen before overt disease progression or observation of treatment toxicity, thus improving both the long-term therapeutic effectiveness and tolerability of this drug.
Resumo:
In 1875, 7 years prior to the description of the Koch bacillus, Klebs visualized the first Streptococcus pneumoniae in a pleural fluid. Since then, this organism has played a determinant role in biomedical science. From a biological point of view, it was largely implicated in the development of passive and active immunization by serotherapy and vaccination, respectively. Genetic transformation was also first observed in S. pneumoniae, leading to the discovery of DNA. From a clinical point of view, S. pneumoniae is still today a prime cause of otitis media in children and of pneumonia in all age groups, as well as a predominant cause of meningitis and bacteremia. In adults, bacteremia is still entailed with a mortality of over 25%. Although S. pneumoniae remained very sensitive to penicillin for many years, penicillin-resistance has emerged and increased dramatically over the last 15 years. During this period of time, the frequency of penicillin-resistant isolates has increased from < or = 1% to frequencies varying from 20 to 60% in geographic areas as diverse as South Africa, Spain, France, Hungary, Iceland, Alaska, and numerous regions of the United States and South America. In Switzerland, the current frequency of penicillin-resistant pneumococci ranges between 5 and > or = 10%. The increase in penicillin-resistant pneumococci correlates with the intensive use of beta-lactam antibiotics. The mechanism of resistance is not due to bacterial production of penicillinase, but to an alteration of the bacterial target of penicillin, the so-called penicillin-binding proteins. Resistance is subdivided into (i) inter mediate level resistance (minimal inhibitory concentration [MIC] of penicillin of 0.1-1 mg/L) and (ii) high level resistance (MCI > or = 2 mg/L). The clinical significance of intermediate resistance remains poorly defined. On the other hand, highly resistant strains were responsible for numerous therapeutical failures, especially in cases of meningitis. Antibiotics recommended against penicillin-resistant pneumococci include cefotaxime, ceftriaxone, imipenem and in some instances vancomycin. However, penicillin-resistant pneumococci tend to present cross-resistances to all the antibotics of the beta-lactam family and could even become resistant to the last resort drugs mentioned above. Thus, in conclusion, the explosion of resistance to penicillin in pneumococci is a ubiquitous phenomenon which must be fought against by (i) a strict utilization of antibiotics, (ii) the practice of microbiological sampling of infected foci before treatment, (iii) the systematic surveillance of resistance profiles of pneumococci against antibiotics and (iv) the adequate vaccination of populations at risk.
Resumo:
Accumulation of fat in the liver increases the risk to develop fibrosis and cirrhosis and is associated with development of the metabolic syndrome. Here, to identify genes or gene pathways that may underlie the genetic susceptibility to fat accumulation in liver, we studied A/J and C57Bl/6 mice that are resistant and sensitive to diet-induced hepatosteatosis and obesity, respectively. We performed comparative transcriptomic and lipidomic analysis of the livers of both strains of mice fed a high fat diet for 2, 10, and 30 days. We found that resistance to steatosis in A/J mice was associated with the following: (i) a coordinated up-regulation of 10 genes controlling peroxisome biogenesis and β-oxidation; (ii) an increased expression of the elongase Elovl5 and desaturases Fads1 and Fads2. In agreement with these observations, peroxisomal β-oxidation was increased in livers of A/J mice, and lipidomic analysis showed increased concentrations of long chain fatty acid-containing triglycerides, arachidonic acid-containing lysophosphatidylcholine, and 2-arachidonylglycerol, a cannabinoid receptor agonist. We found that the anti-inflammatory CB2 receptor was the main hepatic cannabinoid receptor, which was highly expressed in Kupffer cells. We further found that A/J mice had a lower pro-inflammatory state as determined by lower plasma levels and IL-1β and granulocyte-CSF and reduced hepatic expression of their mRNAs, which were found only in Kupffer cells. This suggests that increased 2-arachidonylglycerol production may limit Kupffer cell activity. Collectively, our data suggest that genetic variations in the expression of peroxisomal β-oxidation genes and of genes controlling the production of an anti-inflammatory lipid may underlie the differential susceptibility to diet-induced hepatic steatosis and pro-inflammatory state.
Resumo:
The murine model of Leishmania major infection has been an invaluable tool in understanding T helper differentiation in vivo. The initial evidence for a role of distinct CD4(+) T helper subsets in the outcome of infection was first obtained with this experimental model. The development of CD4(+) Th1 cells was associated with resolution of the lesion, control of parasite replication, and resistance to re-infection in most of the mouse strains investigated (i.e., C57BL/6). In contrast, differentiation of CD4(+) Th2 cells correlated with the development of unhealing lesions, and failure to control parasite load in a few strains (i.e., BALB/c). Since these first reports, an incredible amount of effort has been devoted to understanding the various parameters involved in the differentiation of these, and more recently discovered T helper subsets such as Th17 and T regulatory cells. The discovery of cross-talk between T helper subsets, as well as their plasticity force us to reevaluate the events driving a protective/deleterious T helper immune response following infection with L. major in mice. In this review, we describe the individual contributions of each of these CD4(+) T helper subsets following L. major inoculation, emphasizing recent advances in the field, such as the impact of different substrains of L. major on the pathogenesis of disease.
Resumo:
ABSTRACT Upregulation of the Major Facilitator transporter gene MDR1 (Multi_drug Resistance 1) is one of the mechanisms observed in Candida albicans clinical isolates developing resistance to azole antifungal agents. To better understand this phenomenon, the cis-acting regulatory elements present in a modulatable reporter system under the control of the MDR1 promoter were characterized. In an azole-susceptible strain, transcription of this reporter is transiently upregulated in response to either benomyl or H2O2, whereas its expression is constitutively high in an azole-resistant strain (FR2). Two cis-acting regulatory elements, that are necessary and sufficient to convey the same transcriptional responses to a heterologous promoter (CDR2), were identified within the MDR1promoter. The first element, called BRE (for Benomyl Response Element, -296 to -260 with respect to the ATG start codon), is required for benomyl-dependent MDR1 upregulation and for constitutive high expression of MDR1 in FR2. The second element, termed HRE (for H2O2 Response Element, -561 to -520), is required for H2O2-dependent MDR1 upregulation, but is dispensable for constitutive high expression. Two potential binding sites (TTAG/CTAA) for the blip transcription factor Cap1p lie within the HRE. Moreover, inactivation of CAP1 abolished the transient response to H2O2 and diminished significantly the transient response to benomyl. Cap1p, which has been previously implicated in cellular responses to oxidative stress, may thus play a transacting and positive regulatory role in benomyl- and H2O2-dependent transcription of MDR1. However, it is not the only transcription factor involved in the response of MDR1 to benomyl. A minimal BRE element (-290 to -273) that is sufficient to detect in vitro sequence-specific binding of protein complexes in crude extracts prepared from C. albicans was also delimited. Genome-wide transcript profiling analyses undertaken with a matched pair of clinical isolates, one of which being azole-resistant and upregulating MDR1, and with an azole-susceptible strain exposed to benomyl, revealed that genes specifically upregulated by benomyl harbour in their promoters Cap1p binding site(s). This strengthened the idea that Cap1p plays a role in benomyl-dependent upregulation of MDR1. BRE-like sequences were also identified in several genes co-regulated with MDR1 in both conditions, which was consistent with the involvement of the BRE in both processes. A set of 147 mutants lacking a single transcription factor gene was next screened for loss of MDR1response to benomyl. Unfortunately, none of the tested mutants showed a loss of benomyl-dependent MDR1 upregulation. Nevertheless, a significant diminution of the response was observed in the mutants in which the MADS-box transcription factor Mcm1p and the C2H2 zinc finger transcription factor orf19.13374p were inactivated, suggesting that Mcm1p and orf19.13374p are involved in MDR1response to benomyl. Interestingly, the BRE contains a perfect match to the binding consensus of Mcm1p, raising the possibility that MDR1may be a direct target of this transcriptional activator. In conclusion, while the identity of the trans-acting factors that bind to the BRE and HRE remains to be confirmed, the tools we have developed during characterization of the cis-acting elements of the MDR1promoter should now serve to elucidate the nature of the components that modulate its activity. RESUME La surexpression du gène MDR1 (pour Résistance Multidrogue 1), qui code pour un transporteur de la famille des Major Facilitators, est l'un des mécanismes observés dans les isolats cliniques de la levure Candida albicans développant une résistance aux agents antifongiques appelés azoles. Pour mieux comprendre ce phénomène, les éléments de régulation agissant en cis dans un système rapporteur modulable sous le contrôle du promoteur MDR1 ont été caractérisés. Dans une souche sensible aux azoles, la transcription de ce rapporteur est transitoirement surélevée en réponse soit au bénomyl soit à l'agent oxydant H2O2, alors que son expression est constitutivement élevée dans une souche résistante aux azoles (souche FR2). Deux éléments de régulation agissant en cis, nécessaires et suffisants pour transmettre les mêmes réponses transcriptionnelles à un promoteur hétérologue (CDR2), ont été identifiés dans le promoteur MDR1. Le premier élément, appelé BRE (pour Elément de Réponse au Bénomyl, de -296 à -260 par rapport au codon d'initiation ATG) est requis pour la surexpression de MDR1dépendante du bénomyl et pour l'expression constitutive de MDR1 dans FR2. Le deuxième élément, appelé HRE (pour Elément de Réponse à l'H2O2, de -561 à -520), est requis pour la surexpression de MDR1 dépendante de l'H2O2, mais n'est pas impliqué dans l'expression constitutive du gène MDR1. Deux sites de fixation potentiels (TTAG/CTAA) pour le facteur de transcription Cap1p ont été identifiés dans l'élément HRE. De plus, l'inactivation de CAP1 abolit la réponse transitoire à l'H2O2 et diminua significativement la réponse transitoire au bénomyl. Cap1p, qui est impliqué dans les réponses de la cellule au stress oxydatif, doit donc jouer un rôle positif en trans dans la surexpression de MDR1 dépendante du bénomyl et de l'H2O2. Cependant, ce n'est pas le seul facteur de transcription impliqué dans la réponse au bénomyl. Un élément BRE d'une longueur minimale (de -290 à -273) a également été défini et est suffisant pour détecter une interaction spécifique in vitro avec des protéines provenant d'extraits bruts de C. albicans. L'analyse du profil de transcription d'une paire d'isolats cliniques comprenant une souche résistante aux azoles surexprimant MDR1, et d'une souche sensible aux azoles exposée au bénomyl, a révélé que les gènes spécifiquement surexprimés par le bénomyl contiennent dans leurs promoteurs un ou plusieurs sites de fixation pour Cap1p. Ceci renforce l'idée que Cap1p joue un rôle dans la surexpression de MDR1dépendante du bénomyl. Une ou deux séquences ressemblant à l'élément BRE ont également été identifiées dans la plupart des gènes corégulés avec MDR1 dans ces deux conditions, ce qui était attendu compte-tenu du rôle joué par cet élément dans les deux processus. Une collection de 147 mutants dans lesquels un seul facteur de transcription est inactivé a été testée pour la perte de réponse au bénomyl de MDR1. Malheureusement, la surexpression de MDR1 dépendante du bénomyl n'a été perdue dans aucun des mutants testés. Néanmoins, une diminution significative de la réponse a été observée chez des mutants dans lesquels le facteur de transcription à MADS-box Mcm1p et le facteur de transcription à doigts de zinc de type C2H2 orf19.13374p ont été inactivés, suggérant que Mcm1p et orf19.13374p sont impliqués dans la réponse de MDR1au bénomyl. Il est intéressant de noter que la BRE contient une séquence qui s'aligne parfaitement avec la séquence consensus du site de fixation de Mcm1p, ce qui soulève la possibilité que MDR1 pourrait être une cible directe de cet activateur transcriptionnel. En conclusion, alors que l'identité des facteurs agissant en trans en se fixant à la BRE et à la HRE reste à être confirmée, les outils que nous avons développés au cours de la caractérisation des éléments agissant en cis sur le promoteur MDR1 peut maintenant servir à élucider la nature des composants modulant son activité.
Résistance aux diurétiques de l'anse en clinique [Resistance to loop diuretics in clinical practice]
Resumo:
Loop diuretics belong to the most common medications used in ambulatory and hospitalized patients, especially in situation of hypervolemia and chronic renal failure. Prolonged used of these agents in particular medical conditions can lead to attenuation of their diuretic effect, commonly known as "resistance" to diuretics. This article intends to review the main mechanisms of resistance to loop diuretic and the ways to counteract them in clinical practice.
Resumo:
Resistance of human immunodeficiency virus type 1 (HIV-1) to antiretroviral agents results from target gene mutation within the pol gene, which encodes the viral protease, reverse transcriptase (RT), and integrase. We speculated that mutations in genes other that the drug target could lead to drug resistance. For this purpose, the p1-p6(gag)-p6(pol) region of HIV-1, placed immediately upstream of pol, was analyzed. This region has the potential to alter Pol through frameshift regulation (p1), through improved packaging of viral enzymes (p6(Gag)), or by changes in activation of the viral protease (p6(Pol)). Duplication of the proline-rich p6(Gag) PTAP motif, necessary for late viral cycle activities, was identified in plasma virus from 47 of 222 (21.2%) patients treated with nucleoside analog RT inhibitor (NRTI) antiretroviral therapy but was identified very rarely from drug-naïve individuals. Molecular clones carrying a 3-amino-acid duplication, APPAPP (transframe duplication SPTSPT in p6(Pol)), displayed a delay in protein maturation; however, they packaged a 34% excess of RT and exhibited a marked competitive growth advantage in the presence of NRTIs. This phenotype is reminiscent of the inoculum effect described in bacteriology, where a larger input, or a greater infectivity of an organism with a wild-type antimicrobial target, leads to escape from drug pressure and a higher MIC in vitro. Though the mechanism by which the PTAP region participates in viral maturation is not known, duplication of this proline-rich motif could improve assembly and packaging at membrane locations, resulting in the observed phenotype of increased infectivity and drug resistance.
Resumo:
Genetic background, prenatal and post-natal early-life conditions influence the development of interconnected physiological systems and thereby shape the phenotype. Certain combinations of genotypes and pre- and post-natal conditions may provide higher fitness in a specific environmental context. Here, we investigated how grey partridges Perdix perdix of two strains (wild and domesticated) cope physiologically with pre- and post-natal predictable vs. unpredictable food supply. Food unpredictability occurs frequently in wild environments and requires physiological and behavioural adjustments. Well-orchestrated and efficient physiological systems are presumably more vital in a wild environment as compared to captivity. We thus predicted that wild-strain grey partridges have a stronger immunity, glucocorticoid (GC) stress response and oxidative stress resistance (OSR) than domesticated birds, which have undergone adaptations to captivity. We also predicted that wild-strain birds react more strongly to environmental stimuli and, when faced with harsh prenatal conditions, are better able to prepare their offspring for similarly poor post-natal conditions than birds of domesticated origin. We found that wild-strain offspring were physiologically better prepared for stressful situations as compared to the domesticated strain. They had a high GC stress response and a high OSR when kept under predictable food supply. Wild-strain parents reacted to prenatal unpredictable food supply by lowering their offspring's GC stress response, which potentially lowered GC-induced oxidative pressure. No such pattern was evident in the domesticated birds. Irrespective of strain and prenatal feeding scheme, post-natal unpredictable food supply boosted immune indices, and GC stress response was negatively related to antibody response in females and to mitochondrial superoxide production. Wild-strain grey partridge showed fitness-relevant physiological advantages and appeared to prepare their offspring for the prospective environment. Negative relationships between GC stress response, immunity and oxidative indices imply a pivotal role of an organism's oxidative balance and support the importance of considering multiple physiological systems simultaneously.
Resumo:
OBJECTIVES: The purpose of this study was the qualitative and quantitative assessment of the in vitro effect of HIV-1 protease (PR) mutation 82M on replication capacity and susceptibility to the eight clinically available PR inhibitors (PIs).¦METHODS: The 82M substitution was introduced by site-directed mutagenesis in wild-type subtype B and G strains, as well as reverted back to wild-type in a therapy-failing strain. The recombinant viruses were evaluated for their replication capacity and susceptibility to PIs.¦RESULTS: The single 82M mutation within a wild-type subtype B or G background did not result in drug resistance. However, the in vitro effect of single PR mutations on PI susceptibility is not always distinguishable from wild-type virus, and particular background mutations and polymorphisms are required to detect significant differences in the drug susceptibility profile. Consequently, reverting the 82M mutation back to wild-type (82I) in a subtype G isolate from a patient that failed therapy with multiple other PR mutations did result in significant increases in susceptibility towards indinavir and lopinavir and minor increases in susceptibility towards amprenavir and atazanavir. The presence of the 82M mutation also slightly decreased viral replication, whether it was in the genetic background of subtype B or subtype G.¦CONCLUSIONS: Our results suggest that 82M has an impact on PI susceptibility and that this effect is not due to a compensatory effect on the replication capacity. Because 82M is not observed as a polymorphism in any subtype, these observations support the inclusion of 82M in drug resistance interpretation systems and PI mutation lists.
Resumo:
Granzyme (gzm) A and B, proteases of NK cells and T killer cells, mediate cell death, but also cleave extracellular matrices, inactivate intracellular pathogens, and induce cytokines. Moreover, macrophages, Th2 cells, regulatory T cells, mast cells, and B cells can express gzms. We recently reported gzm induction in human filarial infection. In this study, we show that in rodent filarial infection with Litomosoides sigmodontis, worm loads were significantly reduced in gzmA×B and gzmB knockout mice during the whole course of infection, but enhanced only early in gzmA knockout compared with wild-type mice. GzmA/B deficiency was associated with a defense-promoting Th2 cytokine and Ab shift, enhanced early inflammatory gene expression, and a trend of reduced alternatively activated macrophage induction, whereas gzmA deficiency was linked with reduced inflammation and a trend toward increased alternatively activated macrophages. This suggests a novel and divergent role for gzms in helminth infection, with gzmA contributing to resistance and gzmB promoting susceptibility.
Resumo:
Antifungal therapy failure can be associated with increased resistance to the employed antifungal agents. Candida glabrata, the second most common cause of invasive candidiasis, is intrinsically less susceptible to the azole class of antifungals and accounts for 15% of all Candida bloodstream infections. Here, we show that C. glabrata MED2 (CgMED2), which codes for a tail subunit of the RNA polymerase II Mediator complex, is required for resistance to azole antifungal drugs in C. glabrata. An inability to transcriptionally activate genes encoding a zinc finger transcriptional factor, CgPdr1, and multidrug efflux pump, CgCdr1, primarily contributes to the elevated susceptibility of the Cgmed2Δ mutant toward azole antifungals. We also report for the first time that the Cgmed2Δ mutant exhibits sensitivity to caspofungin, a constitutively activated protein kinase C-mediated cell wall integrity pathway, and elevated adherence to epithelial cells. The increased adherence of the Cgmed2Δ mutant was attributed to the elevated expression of the EPA1 and EPA7 genes. Further, our data demonstrate that CgMED2 is required for intracellular proliferation in human macrophages and modulates survival in a murine model of disseminated candidiasis. Lastly, we show an essential requirement for CgMed2, along with the Mediator middle subunit CgNut1 and the Mediator cyclin-dependent kinase/cyclin subunit CgSrb8, for the high-level fluconazole resistance conferred by the hyperactive allele of CgPdr1. Together, our findings underscore a pivotal role for CgMed2 in basal tolerance and acquired resistance to azole antifungals.
Resumo:
It is well known that visceral adipose tissue (VAT) is associated with insulin resistance (IR). Considerable debate remains concerning the potential positive effect of thigh subcutaneous adipose tissue (TSAT). Our objective was to observe whether VAT and TSAT are opposite, synergistic or additive for both peripheral and hepatic IR. Fifty-two volunteers (21 male/31 female) between 30 and 75 years old were recruited from the general population. All subjects were sedentary overweight or obese (mean BMI 33.0 ± 3.4 kg/m(2)). Insulin sensitivity was determined by a 4-h hyperinsulinemic-euglycemic clamp with stable isotope tracer dilution. Total body fat and lean body mass were determined by dual X-ray absorptiometry. Abdominal and mid-thigh adiposity was determined by computed tomography. VAT was negatively associated with peripheral insulin sensitivity, while TSAT, in contrast, was positively associated with peripheral insulin sensitivity. Subjects with a combination of low VAT and high TSAT had the highest insulin sensitivity, subjects with a combination of high VAT and low TSAT were the most insulin resistant. These associations remained significant after adjusting for age and gender. These data confirm that visceral excess abdominal adiposity is associated with IR across a range of middle-age to older men and women, and further suggest that higher thigh subcutaneous fat is favorably associated with better insulin sensitivity. This strongly suggests that these two distinct fat distribution phenotypes should both be considered in IR as important determinants of cardiometabolic risk.