236 resultados para MR PERFUSION
Resumo:
INTRODUCTION: Cerebrovascular changes are rarely discussed in patients with hemimegalencephaly. These alterations have previously been associated with epileptical activity. CASE: We report the case of a 36-week gestation neonate presenting with total right hemimegalencephaly, as demonstrated by a magnetic resonance imaging (MRI) performed in the first days of life. Perfusion-weighted imaging displayed a clear hypervascularization of the right hemisphere. Diffusion-tensor imaging showed an arrangement of white matter fibers concentrically around the ventricle on the right hemisphere. AngioMRI showed an obvious asymmetry in the size of the middle cerebral arteries, with the right middle cerebral artery being prominent. The baby was free of clinical seizures during his first week of life. An electroencephalogram at that time displayed an asymmetric background activity, but no electrical seizures. CONCLUSION: Perfusion anomalies in hemimegalencephaly may not necessarily be related to epileptical activity, but may be related to vessel alterations.
Resumo:
A 41-year-old male presented with severe frostbite that was monitored clinically and with a new laser Doppler imaging (LDI) camera that records arbitrary microcirculatory perfusion units (1-256 arbitrary perfusion units (APU's)). LDI monitoring detected perfusion differences in hand and foot not seen visually. On day 4-5 after injury, LDI showed that while fingers did not experience any significant perfusion change (average of 31±25 APUs on day 5), the patient's left big toe did (from 17±29 APUs day 4 to 103±55 APUs day 5). These changes in regional perfusion were not detectable by visual examination. On day 53 postinjury, all fingers with reduced perfusion by LDI were amputated, while the toe could be salvaged. This case clearly demonstrates that insufficient microcirculatory perfusion can be identified using LDI in ways which visual examination alone does not permit, allowing prognosis of clinical outcomes. Such information may also be used to develop improved treatment approaches.
Resumo:
To enhance the clinical value of coronary magnetic resonance angiography (MRA), high-relaxivity contrast agents have recently been used at 3T. Here we examine a uniform bilateral shadowing artifact observed along the coronary arteries in MRA images collected using such a contrast agent. Simulations were performed to characterize this artifact, including its origin, to determine how best to mitigate this effect, and to optimize a data acquisition/injection scheme. An intraluminal contrast agent concentration model was used to simulate various acquisition strategies with two profile orders for a slow-infusion of a high-relaxivity contrast agent. Filtering effects from temporally variable weighting in k-space are prominent when a centric, radial (CR) profile order is applied during contrast infusion, resulting in decreased signal enhancement and underestimation of vessel width, while both pre- and postinfusion steady-state acquisitions result in overestimation of the vessel width. Acquisition during the brief postinfusion steady-state produces the greatest signal enhancement and minimizes k-space filtering artifacts.
Resumo:
AIM: To determine the long-term prognostic value of SPECT myocardial perfusion imaging (MPI) for the occurrence of cardiovascular events in diabetic patients. PATIENTS, METHODS: SPECT MPI of 210 consecutive Caucasian diabetic patients were analysed using Kaplan-Meier event-free survival curves and independent predictors were determined by Cox multivariate analyses. RESULTS: Follow-up was complete in 200 (95%) patients with a median period of 3.0 years (0.8-5.0). The population was composed of 114 (57%) men, age 65 +/- 10 years, 181 (90.5%) type 2 diabetes mellitus, 50 (25%) with a history of coronary artery disease (CAD) and 98 (49%) presenting chest pain prior to MPI. The prevalence of abnormal MPI was 58%. Patients with a normal MPI had neither cardiac death, nor myocardial infarction, independently of a history of coronary artery disease or chest pain. Among the independent predictors of cardiac death and myocardial infarction, the strongest was abnormal MPI (p < 0.0001), followed by history of CAD (Hazard Ratio (HR) = 15.9; p = 0.0001), diabetic retinopathy (HR = 10.0; p = 0.001) and inability to exercise (HR = 7.7; p = 0.02). Patients with normal MPI had a low revascularisation rate of 2.4% during the follow-up period. Compared to normal MPI, cardiovascular events increased 5.2 fold for reversible defects, 8.5 fold for fixed defects and 20.1 fold for the association of both defects. CONCLUSION: Diabetic patients with normal MPI had an excellent prognosis independently of history of CAD. On the opposite, an abnormal MPI led to a >5-fold increase in cardiovascular events. This emphasizes the value of SPECT MPI in predicting and risk-stratifying cardiovascular events in diabetic patients.
Resumo:
Recent studies at high magnetic fields using the phase of gradient-echo MR images have shown the ability to unveil cortical substructure in the human brain. To investigate the contrast mechanisms in phase imaging, this study extends, for the first time, phase imaging to the rodent brain. Using a 14.1 T horizontal bore animal MRI scanner for in vivo micro-imaging, images with an in-plane resolution of 33 microm were acquired. Phase images revealed, often more clearly than the corresponding magnitude images, hippocampal fields, cortical layers (e.g. layer 4), cerebellar layers (molecular and granule cell layers) and small white matter structures present in the striatum and septal nucleus. The contrast of the phase images depended in part on the orientation of anatomical structures relative to the magnetic field, consistent with bulk susceptibility variations between tissues. This was found not only for vessels, but also for white matter structures, such as the anterior commissure, and cortical layers in the cerebellum. Such susceptibility changes could result from variable blood volume. However, when the deoxyhemoglobin content was reduced by increasing cerebral blood flow (CBF) with a carbogen breathing challenge, contrast between white and gray matter and cortical layers was not affected, suggesting that tissue cerebral blood volume (and therefore deoxyhemoglobin) is not a major source of the tissue phase contrast. We conclude that phase variations in gradient-echo images are likely due to susceptibility shifts of non-vascular origin.
Resumo:
Rapport de synthèseDrug uptake in a rodent sarcoma model after intravenous injection or isolated lungperfusion of free/liposomal doxorubicinIntroductionLa distribution de doxorubicine libre et doxorubicin liposomale pegylée (Liporubicin?) a été comparée après administration intraveineuse ou application via perfusion isolée du poumon (ILP) dans le parenchyme pulmonaire et dans la tumeur des poumons de rongeurs, porteurs d'une tumeur sarcomateuse.Matériel et méthodeUne tumeur sarcomateuse unique a été générée dans le poumon gauche de 36 rongeurs (Fisher rats) suivie, 10 jours plus tard, par application de doxorubicine ou Liporubicin? soit par perfusion isolée du poumon (n = 20) ou administration intraveineuse (n = 12). Deux différentes concentrations ont été utilisées (100 μg et 400 pg) à doses équimolaires pour les deux formulations de doxorubicine. La concentration des agents cytostatiques ont été mesurées dans la tumeur et le parenchyme pulmonaire à l'aide de chromatographic (HPLC).RésultatsLes résultats indiquent que pour doxorubicine libre, le taux de concentration dans la tumeur et le parenchyme pulmonaire est 3 fois (dosage de 100 μ§) et 10 fois (dosage de 400 plus élevé après ILP par rapport à l'administration intraveineuse. En revanche, pour Liporubicin , le taux de concentration est similaire dans la tumeur et le parenchyme pulmonaire entre ILP et administration intraveineuse, pour les deux doses appliquées.ConclusionPour ILP et administration intraveineuse, le ratio entre accumulation de l'agent cytostatique dans la tumeur versus dans le parenchyme pulmonaire a été comparé pour les deux formulations de doxorubicine ainsi que pour les deux dosages. Pour les deux formulations et dosages de doxorubicine, ILP aboutit à un ratio plus élevé par rapport à l'administration intraveineuse. Cependant, pour les deux formulations et dosages de doxorubicine, ILP résulte également en une distribution de l'agent cytostatique plus hétérogène dans le parenchyme pulmonaire comparé à l'administration intraveineuse.En résumé, l'application de doxorubicine par ILP aboutit donc à une accumulation tumorale élevée et à une augmentation du ratio tumeur-parenchyme pulmonaire, mais en même temps également à une distribution plus hétérogène dans le parenchyme pulmonaire par rapport à l'application intraveineuse. Ceci a été observé pour les deux formulations de doxorubicine et pour les deux dosages appliqué.
Resumo:
Pyrimethamine is used as and anti-infectious agent because of its antifolate properties. Its action is synergistic with that of dapsone and sulfamides on Toxoplasma gondii. The goal of the present study was to evaluate the placental transfer of pyrimethamine in an ex vivo model of perfused human placental cotyledon at term. Human placentas were perfused according to the slightly modified method of Schneider. The pyrimethamine fetal transfer rate was approximately 30%, while cotyledon clearance was about 1.8 ml/min. The placental transfer of pyrimethamine seems to be independent of the maternal concentrations of pyrimethamine, suggesting passive diffusion mechanisms or a nonsaturable active transport at the tested concentrations.
Resumo:
Doxorubicin is an antineoplasic agent active against sarcoma pulmonary metastasis, but its clinical use is hampered by its myelotoxicity and its cumulative cardiotoxicity, when administered systemically. This limitation may be circumvented using the isolated lung perfusion (ILP) approach, wherein a therapeutic agent is infused locoregionally after vascular isolation of the lung. The influence of the mode of infusion (anterograde (AG): through the pulmonary artery (PA); retrograde (RG): through the pulmonary vein (PV)) on doxorubicin pharmacokinetics and lung distribution was unknown. Therefore, a simple, rapid and sensitive high-performance liquid chromatography method has been developed to quantify doxorubicin in four different biological matrices (infusion effluent, serum, tissues with low or high levels of doxorubicin). The related compound daunorubicin was used as internal standard (I.S.). Following a single-step protein precipitation of 500 microl samples with 250 microl acetone and 50 microl zinc sulfate 70% aqueous solution, the obtained supernatant was evaporated to dryness at 60 degrees C for exactly 45 min under a stream of nitrogen and the solid residue was solubilized in 200 microl of purified water. A 100 microl-volume was subjected to HPLC analysis onto a Nucleosil 100-5 microm C18 AB column equipped with a guard column (Nucleosil 100-5 microm C(6)H(5) (phenyl) end-capped) using a gradient elution of acetonitrile and 1-heptanesulfonic acid 0.2% pH 4: 15/85 at 0 min-->50/50 at 20 min-->100/0 at 22 min-->15/85 at 24 min-->15/85 at 26 min, delivered at 1 ml/min. The analytes were detected by fluorescence detection with excitation and emission wavelength set at 480 and 550 nm, respectively. The calibration curves were linear over the range of 2-1000 ng/ml for effluent and plasma matrices, and 0.1 microg/g-750 microg/g for tissues matrices. The method is precise with inter-day and intra-day relative standard deviation within 0.5 and 6.7% and accurate with inter-day and intra-day deviations between -5.4 and +7.7%. The in vitro stability in all matrices and in processed samples has been studied at -80 degrees C for 1 month, and at 4 degrees C for 48 h, respectively. During initial studies, heparin used as anticoagulant was found to profoundly influence the measurements of doxorubicin in effluents collected from animals under ILP. Moreover, the strong matrix effect observed with tissues samples indicate that it is mandatory to prepare doxorubicin calibration standard samples in biological matrices which would reflect at best the composition of samples to be analyzed. This method was successfully applied in animal studies for the analysis of effluent, serum and tissue samples collected from pigs and rats undergoing ILP.
Resumo:
Due to their relatively small size and central location within the thorax, improvement in signal-to-noise (SNR) is of paramount importance for in vivo coronary vessel wall imaging. Thus, with higher field strengths, coronary vessel wall imaging is likely to benefit from the expected "near linear" proportional gain in SNR. In this study, we demonstrate the feasibility of in vivo human high field (3 T) coronary vessel wall imaging using a free-breathing black blood fast gradient echo technique with respiratory navigator gating and real-time motion correction. With the broader availability of more SNR efficient fast spin echo and spiral techniques, further improvements can be expected.
Resumo:
A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units. © RSNA, 2014 Online supplemental material is available for this article.
Resumo:
In acute postoperative pain management intravenous lidocaine and/or ketamine have been advocated because of their morphine-sparing effect. The goal of this prospective, randomised, double-blind study was to assess morphine consumption with different regimens of intravenous infusion of lidocaine, ketamine or both during 48 hours following laparotomy. Patients were randomised into four groups. Group L, K, and KL received intravenous lidocaine, ketamine or a combination, respectively, before incision and during 48 hours postoperatively. The control group (C) received a similar volume of saline bolus and infusion. Postoperative analgesia included morphine delivered by a patient-controlled analgesia device. Primary outcome was the cumulative morphine consumption and pain, sedation scores, pressure algometry and side effects were our secondary outcomes. Cognition and psychomotor performance were also tested. Out of 57 eligible patients, 44 completed the study. Lidocaine reduced the cumulative morphine consumption compared with the control group (mean 0.456 mg.kg-1 +/- 0.244 (SD) versus 0.705 +/- 0.442, respectively, Ρ < 0.001). Pain scores during movement were statistically lower in all three treatment groups. Psychometric tests showed that the lidocaine group expressed more depressed feelings and sadness compared to the control group. Lidocaine administration had a morphine-sparing effect with a 36% reduction of morphine consumption while ketamine alone or combined with lidocaine did not. As a whole, our results suggest that intravenous lidocaine may offer advantages for postoperative analgesia. We propose lidocaine as a new alternative for pain control that needs to be studied further in future multicentric studies.