188 resultados para MIP-1-ALPHA
Resumo:
Mutations designated gtaC and gtaE that affect alpha-phosphoglucomutase activity required for interconversion of glucose 6-phosphate and alpha-glucose 1-phosphate were mapped to the Bacillus subtilis pgcA (yhxB) gene. Backcrossing of the two mutations into the 168 reference strain was accompanied by impaired alpha-phosphoglucomutase activity in the soluble cell extract fraction, altered colony and cell morphology, and resistance to phages phi29 and rho11. Altered cell morphology, reversible by additional magnesium ions, may be correlated with a deficiency in the membrane glycolipid. The deficiency in biofilm formation in gtaC and gtaE mutants may be attributed to an inability to synthesize UDP-glucose, an important intermediate in a number of cell envelope biosynthetic processes.
Resumo:
The specificity of recognition of pMHC complexes by T lymphocytes is determined by the V regions of the TCR alpha- and beta-chains. Recent experimental evidence has suggested that Ag-specific TCR repertoires may exhibit a more V alpha- than V beta-restricted usage. Whether V alpha usage is narrowed during immune responses to Ag or if, on the contrary, restricted V alpha usage is already defined at the early stages of TCR repertoire selection, however, has remained unexplored. Here, we analyzed V and CDR3 TCR regions of single circulating naive T cells specifically detected ex vivo and isolated with HLA-A2/melan-A peptide multimers. Similarly to what was previously observed for melan-A-specific Ag-experienced T cells, we found a relatively wide V beta usage, but a preferential V alpha 2.1 usage. Restricted V alpha 2.1 usage was also found among single CD8(+) A2/melan-A multimer(+) thymocytes, indicating that V alpha-restricted selection takes place in the thymus. V alpha 2.1 usage, however, was independent from functional avidity of Ag recognition. Thus, interaction of the pMHC complex with selected V alpha-chains contributes to set the broad Ag specificity, as underlined by preferential binding of A2/melan-A multimers to V alpha 2.1-bearing TCRs, whereas functional outcomes result from the sum of these with other interactions between pMHC complex and TCR.
Resumo:
Islet adaptations to pregnancy were explored in C57BL6/J mice lacking functional receptors for glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). Pregnant wild type mice and GIPRKO mice exhibited marked increases in islet and beta cell area, numbers of medium/large sized islets, with positive effects on Ki67/Tunel ratio favouring beta cell growth and enhanced pancreatic insulin content. Alpha cell area and glucagon content were unchanged but prohormone convertases PC2 and PC1/3 together with significant amounts of GLP-1 and GIP were detected in alpha cells. Knockout of GLP-1R abolished these islet adaptations and paradoxically decreased pancreatic insulin, GLP-1 and GIP. This was associated with abolition of normal pregnancy-induced increases in plasma GIP, L-cell numbers, and intestinal GIP and GLP-1 stores. These data indicate that GLP-1 but not GIP is a key mediator of beta cell mass expansion and related adaptations in pregnancy, triggered in part by generation of intra-islet GLP-1.
Resumo:
In this chapter we summarize some aspects of the structure-functional relationship of the alpha 1a and alpha 1b-adrenergic receptor subtypes related to the receptor activation process as well as the effect of different alpha-blockers on the constitutive activity of the receptor. Molecular modeling of the alpha 1a and alpha 1b-adrenergic receptor subtypes and computational simulation of receptor dynamics were useful to interpret the experimental findings derived from site directed mutagenesis studies.
Resumo:
Loss of IκB kinase (IKK) β-dependent NF-κB signaling in hematopoietic cells is associated with increased granulopoiesis. Here we identify a regulatory cytokine loop that causes neutrophilia in Ikkβ-deficient mice. TNF-α-dependent apoptosis of myeloid progenitor cells leads to the release of IL-1β, which promotes Th17 polarization of peripheral CD4(+) T cells. Although the elevation of IL-17 and the consecutive induction of granulocyte colony-stimulating factor compensate for the loss of myeloid progenitor cells, the facilitated induction of Th17 cells renders Ikkβ-deficient animals more susceptible to the development of experimental autoimmune encephalitis. These results unravel so far unanticipated direct and indirect functions for IKKβ in myeloid progenitor survival and maintenance of innate and Th17 immunity and raise concerns about long-term IKKβ inhibition in IL-17-mediated diseases.
Resumo:
In insulin-secreting cells, cytokines activate the c-Jun N-terminal kinase (JNK), which contributes to a cell signaling towards apoptosis. The JNK activation requires the presence of the murine scaffold protein JNK-interacting protein 1 (JIP-1) or human Islet-brain 1(IB1), which organizes MLK3, MKK7 and JNK for proper signaling specificity. Here, we used adenovirus-mediated gene transfer to modulate IB1/JIP-1 cellular content in order to investigate the contribution of IB1/JIP-1 to beta-cell survival. Exposure of the insulin-producing cell line INS-1 or isolated rat pancreatic islets to cytokines (interferon-gamma, tumor necrosis factor-alpha and interleukin-1beta) induced a marked reduction of IB1/JIP-1 content and a concomitant increase in JNK activity and apoptosis rate. This JNK-induced pro-apoptotic program was prevented in INS-1 cells by overproducing IB1/JIP-1 and this effect was associated with inhibition of caspase-3 cleavage. Conversely, reducing IB1/JIP-1 content in INS-1 cells and isolated pancreatic islets induced a robust increase in basal and cytokine-stimulated apoptosis. In heterozygous mice carrying a selective disruption of the IB1/JIP-1 gene, the reduction in IB1/JIP-1 content in happloinsufficient isolated pancreatic islets was associated with an increased JNK activity and basal apoptosis. These data demonstrate that modulation of the IB1-JIP-1 content in beta cells is a crucial regulator of JNK signaling pathway and of cytokine-induced apoptosis.
Resumo:
Background: Intervention with antiretroviral treatment (ART) and control of viral replication at the time of HIV-1 seroconversion may curtail cumulative immunological damage. We have therefore hypothesized that ART maintenance over a very prolonged period in HIV-1 seroconverters could induce an immuno-virological status similar to that of HIV-1 long-term non-progressors (LTNPs).Methodology/Principal Findings: We have investigated a cohort of 20 HIV-1 seroconverters on long-term ART (LTTS) and compared it to one of 15 LTNPs. Residual viral replication and reservoirs in peripheral blood, as measured by cell-associated HIV-1 RNA and DNA, respectively, were demonstrated to be similarly low in both cohorts. These two virologically matched cohorts were then comprehensively analysed by polychromatic flow cytometry for HIV-1-specific CD4(+) and CD8(+) T-cell functional profile in terms of cytokine production and cytotoxic capacity using IFN-gamma, IL-2, TNF-alpha production and perforin expression, respectively. Comparable levels of highly polyfunctional HIV-1-specific CD4(+) and CD8(+) T-cells were found in LTTS and LTNPs, with low perforin expression on HIV-1-specific CD8+ T-cells, consistent with a polyfunctional/non-cytotoxic profile in a context of low viral burden.Conclusions: Our results indicate that prolonged ART initiated at the time of HIV-1 seroconversion is associated with immuno-virological features which resemble those of LTNPs, strengthening the recent emphasis on the positive impact of early treatment initiation and paving the way for further interventions to promote virological control after treatment interruption.
Resumo:
Voltage-dependent calcium channel (Ca(v)) pores are modulated by cytosolic beta subunits. Four beta-subunit genes and their splice variants offer a wide structural array for tissue- or disease-specific biophysical gating phenotypes. For instance, the length of the N terminus of beta(2) subunits has major effects on activation and inactivation rates. We tested whether a similar mechanism principally operates in a beta(1) subunit. Wild-type beta(1a) subunit (N terminus length 60 aa) and its newly generated N-terminal deletion mutants (51, 27 and 18 aa) were examined within recombinant L-type calcium channel complexes (Ca(v)1.2 and alpha(2)delta2) in HEK293 cells at the whole-cell and single-channel level. Whole-cell currents were enhanced by co-transfection of the full-length beta(1a) subunit and by all truncated constructs. Voltage dependence of steady-state activation and inactivation did not depend on N terminus length, but inactivation rate was diminished by N terminus truncation. This was confirmed at the single-channel level, using ensemble average currents. Additionally, gating properties were estimated by Markov modeling. In confirmation of the descriptive analysis, inactivation rate, but none of the other transition rates, was reduced by shortening of the beta(1a) subunit N terminus. Our study shows that the length-dependent mechanism of modulating inactivation kinetics of beta(2) calcium channel subunits can be confirmed and extended to the beta(1) calcium channel subunit.
Resumo:
Rat 1 fibroblasts transfected to express either the wild-type hamster alpha 1B-adrenergic receptor or a constitutively active mutant (CAM) form of this receptor resulting from the alteration of amino acid residues 288-294 to encode the equivalent region of the human beta 2-adrenergic receptor were examined. The basal level of inositol phosphate generation in cells expressing the CAM alpha 1B-adrenergic receptor was greater than for the wild-type receptor, The addition of maximally effective concentrations of phenylephrine or noradrenaline resulted in substantially greater levels of inositol phosphate generation by the CAM alpha 1B-adrenergic receptor, although this receptor was expressed at lower steady-state levels than the wild-type receptor. The potency of both phenylephrine and noradrenaline to stimulate inositol phosphate production was approx. 200-fold greater at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. In contrast, endothelin 1, acting at the endogenously expressed endothelin ETA, receptor, displayed similar potency and maximal effects in the two cell lines. The sustained presence of phenylephrine resulted in down-regulation of the alpha subunits of the phosphoinositidase C-linked, pertussis toxin-insensitive, G-proteins G9 and G11 in cells expressing either the wild-type or the CAM alpha 1B-adrenergic receptor. The degree of down-regulation achieved was substantially greater in cells expressing the CAM alpha 1B-adrenergic receptor at all concentrations of the agonist. However, in this assay phenylephrine displayed only a slightly greater potency at the CAM alpha 1B-adrenergic receptor than at the wild-type receptor. There were no detectable differences in the basal rate of G9 alpha/G11 alpha degradation between cells expressing the wild-type or the CAMalpha 1B-adrenergic receptor. In both cell lines the addition of phenylephrine substantially increased the rate of degradation of these G-proteins, with a greater effect at the CAM alpha 1B-adrenergic receptor. The enhanced capacity of agonist both to stimulate second-messenger production at the CAM alpha 1B-adrenergic receptor and to regulate cellular levels of its associated G-proteins by stimulating their rate of degradation is indicative of an enhanced stoichiometry of coupling of this form of the receptor to G9 and G11.
Resumo:
Background and objectives In humans, circulating CD4(+)CD25(high) T cells contain mainly regulatory T cells (Treg; FoxP3(+)IL-7R alpha(low)), but a small subset is represented by activated effector T cells (Tact; FoxP3(-)IL-7R alpha(high)). The balance between Tact and Treg may be important after transplantation. The aim of this study was first to analyze and correlate CD4(+)CD25(high) Tact and Treg with the clinical status of kidney transplant recipients and second to study prospectively the effect of two immunosuppressive regimens on Tact/Treg during the first year after transplantation.Design, setting, participants, & measurements CD4(+)CD25(high) Tact and Treg were analyzed by flow cytometry, either retrospectively in 90 patients greater than 1 year after kidney transplantation (cross-sectional analysis) or prospectively in 35 patients receiving two immunosuppressive regimens after kidney transplantation (prospective analysis).Results A higher proportion of Tact and a lower proportion of Treg were found in the majority of kidney recipients. In chronic Immoral rejection, a strikingly higher proportion of Tact was present. A subgroup of stable recipients receiving calcineurin inhibitor-free immunosuppression (mycophenolate mofetil, azathioprine, or sirolimus) had Tact values that were similar to healthy individuals. In the prospective analysis, the proportion of Tact significantly increased in both immunosuppression groups during the first year after transplantation.Conclusions These data highlight distinct patterns in the proportion of circulating Tact depending on the clinical status of kidney recipients. Moreover, the prospective analysis demonstrated an increase in the proportion of Tact, regardless of the immunosuppressive regimen. The measurement of Tact, in addition to Treg, may become a useful immune monitoring tool after kidney transplantation. Clin J Am Soc Nephrol 6: 2025-2033, 2011. doi: 10.2215/CJN.09611010
Resumo:
We have characterized the pharmacological antagonism, i.e., neutral antagonism or inverse agonism, displayed by a number of alpha-blockers at two alpha1-adrenergic receptor (AR) subtypes, alpha(1a)- and alpha(1b)-AR. Constitutively activating mutations were introduced into the alpha(1a)-AR at the position homologous to A293 of the alpha(1b)-AR where activating mutations were previously described. Twenty-four alpha-blockers differing in their chemical structures were initially tested for their effect on the agonist-independent inositol phosphate response mediated by the constitutively active A271E and A293E mutants expressed in COS-7 cells. A selected number of drugs also were tested for their effect on the small, but measurable spontaneous activity of the wild-type alpha(1a)- and alpha(1b)-AR expressed in COS-7 cells. The results of our study demonstrate that a large number of structurally different alpha-blockers display profound negative efficacy at both the alpha(1a)- and alpha(1b)-AR subtypes. For other drugs, the negative efficacy varied at the different constitutively active mutants. The most striking difference concerns a group of N-arylpiperazines, including 8-[2-[4-(5-chloro-2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro [4, 5] decane-7,9-dione (REC 15/3039), REC 15/2739, and REC 15/3011, which are inverse agonists with profound negative efficacy at the wild-type alpha(1b)-AR, but not at the alpha(1a)-AR.
Resumo:
Type 2 diabetes has been related to a decrease of mitochondrial DNA (mtDNA) content. In this study, we show increased expression of the peroxisome proliferator-activated receptor-alpha (PPARalpha) and its target genes involved in fatty acid metabolism in skeletal muscle of Zucker Diabetic Fatty (ZDF) (fa/fa) rats. In contrast, the mRNA levels of genes involved in glucose transport and utilization (GLUT4 and phosphofructokinase) were decreased, whereas the expression of pyruvate dehydrogenase kinase 4 (PDK-4), which suppresses glucose oxidation, was increased. The shift from glucose to fatty acids as the source of energy in skeletal muscle of ZDF rats was accompanied by a reduction of subunit 1 of complex I (NADH dehydrogenase subunit 1, ND1) and subunit II of complex IV (cytochrome c oxidase II, COII), two genes of the electronic transport chain encoded by mtDNA. The transcript levels of PPARgamma Coactivator 1 (PGC-1) showed a significant reduction. Treatment with troglitazone (30 mg/kg/day) for 15 days reduced insulin values and reversed the increase in PDK-4 mRNA levels, suggesting improved insulin sensitivity. In addition, troglitazone treatment restored ND1 and PGC-1 expression in skeletal muscle. These results suggest that troglitazone may avoid mitochondrial metabolic derangement during the development of diabetes mellitus 2 in skeletal muscle.
Resumo:
Na,K-ATPase is a potential target for regulatory phosphorylation by protein kinase A and C (PKA and PKC). To identify the phosphorylation sites, we have mutated the alpha 1-subunit of Bufo marinus in a highly conservative PKA and in 20 different PKC consensus sequences. The mutants were expressed in Xenopus oocytes and their phosphorylation capacity tested in homogenates upon stimulation of PKA or PKC. While serine 943 (Ser-943) was identified as a unique target site for PKA, none of the PKC consensus serine or threonine residues are implicated in PKC phosphorylation. Controlled trypsinolysis of phosphorylated alpha-subunits of various purified enzyme preparations and of alpha/beta complexes from oocyte homogenates revealed that PKC phosphorylation was exclusively associated with the N terminus. A fusion protein containing the first 32 amino acids of the Bufo alpha-subunit was phosphorylated in vitro and serine and threonine residues (Thr-15 and Ser-16) in this region were identified by site-directed mutagenesis as the PKC phosphorylation sites. Finally, the Bufo alpha-subunit was phosphorylated by protein kinases in transfected COS-7 cells. In intact cells, PKA stimulation induced phosphorylation exclusively on Ser-943 and PKC stimulation mainly on Thr-15 and Ser-16, which are contained in a novel PKC phosphorylation motif.
Resumo:
Mitochondrial impairment is hypothesized to contribute to the pathogenesis of insulin resistance. Mitofusin (Mfn) proteins regulate the biogenesis and maintenance of the mitochondrial network, and when inactivated, cause a failure in the mitochondrial architecture and decreases in oxidative capacity and glucose oxidation. Exercise increases muscle mitochondrial content, size, oxidative capacity and aerobic glucose oxidation. To address if Mfn proteins are implicated in these exercise-induced responses, we measured Mfn1 and Mfn2 mRNA levels, pre-, post-, 2 and 24 h post-exercise. Additionally, we measured the expression levels of transcriptional regulators that control mitochondrial biogenesis and functions, including PGC-1alpha, NRF-1, NRF-2 and the recently implicated ERRalpha. We show that Mfn1, Mfn2, NRF-2 and COX IV mRNA were increased 24 h post-exercise, while PGC-1alpha and ERRalpha mRNA increased 2 h post-exercise. Finally, using in vitro cellular assays, we demonstrate that Mfn2 gene expression is driven by a PGC-1alpha programme dependent on ERRalpha. The PGC-1alpha/ERRalpha-mediated induction of Mfn2 suggests a role of these two factors in mitochondrial fusion. Our results provide evidence that PGC-1alpha not only mediates the increased expression of oxidative phosphorylation genes but also mediates alterations in mitochondrial architecture in response to aerobic exercise in humans
Resumo:
Through analysis of mice with spatially and temporally restricted inactivation of Lpin1, we characterized its cell autonomous function in both white (WAT) and brown (BAT) adipocyte development and maintenance. We observed that the lipin 1 inactivation in adipocytes of aP2(Cre/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice resulted in lipodystrophy and the presence of adipocytes with multilocular lipid droplets. We further showed that time-specific loss of lipin 1 in mature adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice led to their replacement by newly formed Lpin1-positive adipocytes, thus establishing a role for lipin 1 in mature adipocyte maintenance. Importantly, we observed that the presence of newly formed Lpin1-positive adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice protected these animals against WAT inflammation and hepatic steatosis induced by a high-fat diet. Loss of lipin 1 also affected BAT development and function, as revealed by histological changes, defects in the expression of peroxisome proliferator-activated receptor alpha (PPARα), PGC-1α, and UCP1, and functionally by altered cold sensitivity. Finally, our data indicate that phosphatidic acid, which accumulates in WAT of animals lacking lipin 1 function, specifically inhibits differentiation of preadipocytes. Together, these observations firmly demonstrate a cell autonomous role of lipin 1 in WAT and BAT biology and indicate its potential as a therapeutical target for the treatment of obesity.