325 resultados para MICELLE-MEDIATED EXTRACTION
Resumo:
Cell adhesion to the extracellular matrix proteins occurs through interactions with integrins that bind to Arg-Gly-Asp (RGD) tripeptides, and syndecan-4, which recognizes the heparin-binding domain of other proteins. Both receptors trigger signaling pathways, including those that activate RhoGTPases such as RhoA and Rac1. This sequence of events modulates cell adhesion to the ECM and cell migration. Using a neuron-astrocyte model, we have reported that the neuronal protein Thy-1 engages αVβ3 integrin and syndecan-4 to induce RhoA activation and strong astrocyte adhesion to their underlying substrate. Thus, because cell-cell interactions and strong cell attachment to the matrix are considered antagonistic to cell migration, we hypothesized that Thy-1 stimulation of astrocytes should preclude cell migration. Here, we studied the effect of Thy-1 expressing neurons on astrocyte polarization and migration using a wound-healing assay and immunofluorescence analysis. Signaling molecules involved were studied by affinity precipitation, western blotting and the usage of specific antibodies. Intriguingly, Thy-1 interaction with its two receptors was found to increase astrocyte polarization and migration. The latter events required interactions of these receptors with both the RGD-like sequence and the heparin-binding domain of Thy-1. Additionally, prolonged Thy-1-receptor interactions inhibited RhoA activation while activating FAK, PI3K and Rac1. Therefore, sustained engagement of integrin and syndecan-4 with the neuronal surface protein Thy-1 induces astrocyte migration. Interestingly we identify here, a cell-cell interaction that despite initially inducing strong cell attachment, favors cell migration upon persistent stimulation by engaging the same signaling receptors and molecules as those utilized by the extracellular matrix proteins to stimulate cell movement.
Resumo:
BACKGROUND: Anti-CD154 (MR1) monoclonal antibody (mAb) and rapamycin (RAPA) treatment both improve survival of rat-to-mouse islet xenograft. The present study investigated the effect of combined RAPA/MR1 treatment on rat-to-mouse islet xenograft survival and analyzed the role of CD4(+)CD25(+)Foxp3(+) T regulatory cells (Treg) in the induction and maintenance of the ensuing tolerance. METHODOLOGY/PRINCIPAL FINDINGS: C57BL/6 mice were treated with MR1/RAPA and received additional monoclonal anti-IL2 mAb or anti CD25 mAb either early (0-28 d) or late (100-128 d) post-transplantation. Treg were characterised in the blood, spleen, draining lymph nodes and within the graft of tolerant and rejecting mice by flow cytometry and immunohistochemistry. Fourteen days of RAPA/MR1 combination therapy allowed indefinite islet graft survival in >80% of the mice. Additional administration of anti-IL-2 mAb or depleting anti-CD25 mAb at the time of transplantation resulted in rejection (100% and 89% respectively), whereas administration at 100 days post transplantation lead to lower rejection rates (25% and 40% respectively). Tolerant mice showed an increase of Treg within the graft and in draining lymph nodes early post transplantation, whereas 100 days post transplantation no significant increase of Treg was observed. Rejecting mice showed a transient increase of Treg in the xenograft and secondary lymphoid organs, which disappeared within 7 days after rejection. CONCLUSIONS/SIGNIFICANCES: These results suggest a critical role for Treg in the induction phase of tolerance early after islet xenotransplantation. These encouraging data support the need of developing further Treg therapy for overcoming the species barrier in xenotransplantation.
Resumo:
Prostaglandin E(2) (PGE(2)) promotes angiogenesis by in part inducing endothelial cell survival and migration. The present study examined the role of mTOR and its two complexes, mTORC1 and mTORC2, in PGE(2)-mediated endothelial cell responses. We used small interfering RNA (siRNA) to raptor or rictor to block mTORC1 or mTORC2, respectively. We observed that down-regulation of mTORC2 but not mTORC1 reduced baseline and PGE(2)-induced endothelial cell survival and migration. At the molecular level, we found that knockdown of mTORC2 inhibited PGE(2)-mediated Rac and Akt activation two important signaling intermediaries in endothelial cell migration and survival, respectively. In addition, inhibition of mTORC2 by prolonged exposure of endothelial cells to rapamycin also prevented PGE(2)-mediated endothelial cell survival and migration confirming the results obtained with the siRNA approach. Taken together these results show that mTORC2 but not mTORC1 is an important signaling intermediary in PGE(2)-mediated endothelial cell responses.
Resumo:
Normal myocardium adapts to increase of nutritional fatty acid supply by upregulation of regulatory proteins of the fatty acid oxidation pathway. Because advanced heart failure is associated with reduction of regulatory proteins of fatty acid oxidation, we hypothesized that failing myocardium may not be able to adapt to increased fatty acid intake and therefore undergo lipid accumulation, potentially aggravating myocardial dysfunction. We determined the effect of high-fat diet in transgenic mice with overexpression of angiotensinogen in the myocardium (TG1306/R1). TG1306/R1 mice develop ANG II-mediated left ventricular hypertrophy, and at one year of age approximately half of the mice present heart failure associated with reduced expression of regulatory proteins of fatty acid oxidation and reduced palmitate oxidation during ex vivo working heart perfusion. Hypertrophied hearts from TG1306/R1 mice without heart failure adapted to high-fat feeding, similarly to hearts from wild-type mice, with upregulation of regulatory proteins of fatty acid oxidation and enhancement of palmitate oxidation. There was no myocardial lipid accumulation or contractile dysfunction. In contrast, hearts from TG1306/R1 mice presenting heart failure were unable to respond to high-fat feeding by upregulation of fatty acid oxidation proteins and enhancement of palmitate oxidation. This resulted in accumulation of triglycerides and ceramide in the myocardium, and aggravation of contractile dysfunction. In conclusion, hearts with ANG II-induced contractile failure have lost the ability to enhance fatty acid oxidation in response to increased fatty acid supply. The ensuing accumulation of lipid compounds may play a role in the observed aggravation of contractile dysfunction.
Resumo:
In Escherichia coli, the RuvA and RuvB proteins interact at Holliday junctions to promote branch migration leading to the formation of heteroduplex DNA. RuvA provides junction-binding specificity and RuvB drives ATP-dependent branch migration. Since RuvB contains sequence motifs characteristic of a DNA helicase and RuvAB exhibit helicase activity in vitro, we have analysed the role of DNA unwinding in relation to branch migration. A mutant RuvB protein, RuvB(D113E), mutated in helicase motif II (the DExx box), has been purified to homogeneity. The mutant protein forms hexameric rings on DNA similar to those formed by wild-type protein and promotes branch migration in the presence of RuvA. However, RuvB(D113E) exhibits reduced ATPase activity and is severely compromised in its DNA helicase activity. Models for RuvAB-mediated branch migration that invoke only limited DNA unwinding activity are proposed.
Resumo:
Proactive career behaviors become increasingly important in today's career environment, but little is known about how and when motivational patterns affect individual differences. In a six-month longitudinal study among German university students (Study 1; N = 289) it was demonstrated that motivation in terms of "can do" (self-efficacy and context beliefs), "reason to" (autonomous career goals), and "energized to" (positive affect) significantly predicted career behaviors. Contrary to expectation, negative context beliefs had a positive effect when combined with other motivational states. Study 2 replicated and extended those results by investigating whether "can do" motivation mediates the effect of proactive personality and whether those effects are conditional upon the degree of career choice decidedness. We tested a moderated multiple mediation model with a unique sample of 134 German students, assessed three times, each interval being 6 weeks apart. The results showed that effects of proactivity were partially carried through higher self-efficacy beliefs but not context beliefs. Supporting a moderation model, indirect effects through self-efficacy beliefs were not present for students with very low decidedness.
Resumo:
Engagement of TNF receptor 1 by TNFalpha activates the transcription factor NF-kappaB but can also induce apoptosis. Here we show that upon TNFalpha binding, TNFR1 translocates to cholesterol- and sphingolipid-enriched membrane microdomains, termed lipid rafts, where it associates with the Ser/Thr kinase RIP and the adaptor proteins TRADD and TRAF2, forming a signaling complex. In lipid rafts, TNFR1 and RIP are ubiquitylated. Furthermore, we provide evidence that translocation to lipid rafts precedes ubiquitylation, which leads to the degradation via the proteasome pathway. Interfering with lipid raft organization not only abolishes ubiquitylation but switches TNFalpha signaling from NF-kappaB activation to apoptosis. We suggest that lipid rafts are crucial for the outcome of TNFalpha-activated signaling pathways.
Resumo:
This chapter describes the potential use of viral-mediated gene transfer in the central nervous system for the silencing of gene expression using RNA interference in the context of Huntington's disease (HD). Protocols provided here describe the design of small interfering RNAs, their encoding in lentiviral vectors (LVs) and viral production, as well as procedures for their stereotaxic injection in the rodent brain.
Adenovirus-mediated gene transfer into selected liver segments using a vascular exclusion technique.
Resumo:
Adenovirus-mediated gene therapy is hampered by severe virus-related toxicity, especially to the liver. The aim of the present study was to test the ability of a vascular exclusion technique to achieve transgene expression within selected liver segments, thus minimizing both viral and transgene product toxicity to the liver. An E1-E3-deleted replication-deficient adenovirus expressing a green fluorescent protein (GFP) reporter gene was injected into the portal vein of BDIX rats, with simultaneous clamping of the portal vein tributaries to liver segments II, III, IV, V, and VIII. GFP expression and inflammatory infiltrate were measured in the different segments of the liver and compared with those of the livers of animals receiving the viral vector in the portal vein without clamping. The GFP expression was significantly higher in the selectively perfused segments of the liver as compared with the non-perfused segments (p < 0.0001) and with the livers of animals that received the vector in the portal vein without clamping (p < 0.0001). Accordingly, the inflammatory infiltrate was more intense in the selectively perfused liver segments as compared with all other groups (p < 0.0001). Fluorescence was absent in lungs and kidneys and minimal in spleen. The clinical usefulness of adenovirus-mediated gene transfer to the liver largely depends on the reduction of its liver toxicity. Clamping of selected portal vein branches during injection allows for delivery of genes of interest to targeted liver segments. Transgene expression confined to selected liver segments may be useful in the treatment of focal liver diseases, including metastases.
Resumo:
BACKGROUND: Up to now, the different uptake pathways and the subsequent intracellular trafficking of plasmid DNA have been largely explored. By contrast, the mode of internalization and the intracellular routing of an exogenous mRNA in transfected cells are poorly investigated and remain to be elucidated. The bioavailability of internalized mRNA depends on its intracellular routing and its potential accumulation in dynamic sorting sites for storage: stress granules and processing bodies. This question is of particular significance when a secure transposon-based system able to integrate a therapeutic transgene into the genome is used. Transposon vectors usually require two components: a plasmid DNA, carrying the gene of interest, and a source of transposase allowing the integration of the transgene. The principal drawback is the lasting presence of the transposase, which could remobilize the transgene once it has been inserted. Our study focused on the pharmacokinetics of the transposition process mediated by the piggyBac transposase mRNA transfection. Exogenous mRNA internalization and trafficking were investigated towards a better apprehension and fine control of the piggyBac transposase bioavailability. RESULTS: The mRNA prototype designed in this study provides a very narrow expression window of transposase, which allows high efficiency transposition with no cytotoxicity. Our data reveal that exogenous transposase mRNA enters cells by clathrin and caveolae-mediated endocytosis, before finishing in late endosomes 3 h after transfection. At this point, the mRNA is dissociated from its carrier and localized in stress granules, but not in cytoplasmic processing bodies. Some weaker signals have been observed in stress granules at 18 h and 48 h without causing prolonged production of the transposase. So, we designed an mRNA that is efficiently translated with a peak of transposase production 18 h post-transfection without additional release of the molecule. This confines the integration of the transgene in a very small time window. CONCLUSION: Our results shed light on processes of exogenous mRNA trafficking, which are crucial to estimate the mRNA bioavailability, and increase the biosafety of transgene integration mediated by transposition. This approach provides a new way for limiting the transgene copy in the genome and their remobilization by mRNA engineering and trafficking.
Resumo:
Aggregating brain cell cultures at an advanced maturational stage (20-21 days in vitro) were subjected for 1-3 h to anaerobic (hypoxic) and/or stationary (ischemic) conditions. After restoration of the normal culture conditions, cell loss was estimated by measuring the release of lactate dehydrogenase as well as the irreversible decrease of cell type-specific enzyme activities, total protein and DNA content. Ischemia for 2 h induced significant neuronal cell death. Hypoxia combined with ischemia affected both neuronal and glial cells to different degrees (GABAergic neurons>cholinergic neurons>astrocytes). Hypoxic and ischemic conditions greatly stimulated the uptake of 2-deoxy-D-glucose, indicating increased glucose consumption. Furthermore, glucose restriction (5.5 mM instead of 25 mM) dramatically increased the susceptibility of neuronal and glial cells to hypoxic and ischemic conditions. Glucose media concentrations below 2 mM caused selective neuronal cell death in otherwise normal culture conditions. GABAergic neurons showed a particularly high sensitivity to glucose restriction, hypoxia, and ischemia. The pattern of ischemia-induced changes in vitro showed many similarities to in vivo findings, suggesting that aggregating brain cell cultures provide a useful in vitro model to study pathogenic mechanisms related to brain ischemia.
Resumo:
Using numerical simulations, we investigate the underlying physical effects responsible for the overall organization of chromosomal territories in interphase nuclei. In particular, we address the following three questions: (i) why are chromosomal territories with relatively high transcriptional activity on average, closer to the centre of cell's nucleus than those with the lower activity? (ii) Why are actively transcribed genes usually located at the periphery of their chromosomal territories? (iii) Why are pair-wise contacts between active and inactive genes less frequent than those involving only active or only inactive genes? We show that transcription factories-mediated contacts between active genes belonging to different chromosomal territories are instrumental for all these features of nuclear organization to emerge spontaneously due to entropic effects arising when chromatin fibres are highly crowded.
Resumo:
BACKGROUND AND STUDY AIMS: Low dose photodynamic therapy (LDPDT) may modify the mucosal immune response and may thus provide a therapy for Crohn's disease. We evaluated the efficacy and safety of this technique in a murine T cell-mediated colitis model. METHODS: The safety of LDPDT was first tested in BALB/c mice. Naïve T cells were used to induce colitis in mice with severe combined immunodeficiency, which were followed up endoscopically, and a murine endoscopic index of colitis (MEIC) was developed. The efficacy of LDPDT (10 J/cm (2); delta-aminolevulinic acid, 15 mg/kg bodyweight) was then tested on mice with moderate colitis, while a disease control group received no treatment. The MEIC, weight, length, and histology of the colon, cytokine expression indices, number of mucosal CD4 (+) T cells, percentage of apoptotic CD4 (+) T cells, body weight, and systemic side effects were evaluated. RESULTS: LDPDT improved the MEIC ( P = 0.011) and the histological score ( P = 0.025), diminished the expression indices of the proinflammatory cytokines, interleukin-6 ( P = 0.042), interleukin-17 ( P = 0.029), and interferon-gamma ( P = 0.014), decreased the number of mucosal CD4 (+) T cells, and increased the percentage of apoptotic CD4 (+) T cells compared with the disease control group. No local or systemic side effects occurred. CONCLUSION: LDPDT improves murine T cell-mediated colitis, decreases the proinflammatory cytokines interleukin-6, interleukin-17, and interferon-gamma, and decreases the number of CD4 (+) T cells. No adverse events were observed. Therefore, this technique is now being evaluated in patients with inflammatory bowel disease.
Resumo:
P>1. Entomopathogenic nematodes can function as indirect defence for plants that are attacked by root herbivores. By releasing volatile organic compounds (VOCs), plants signal the presence of host insects and thereby attract nematodes.2. Nonetheless, how roots deploy indirect defences, how indirect defences relate to direct defences, and the ecological consequences of root defence allocation for herbivores and plant biomass are essentially unknown.3. We investigate a natural below-ground tritrophic system, involving common milkweed, a specialist root-boring beetle and entomopathogenic nematodes, and asked whether there is a negative genetic correlation between direct defences (root cardenolides) and indirect defences (emission of volatiles in the roots and nematode attraction), and between constitutive and inducible defences.4. Volatiles of roots were analysed using two distinct sampling methods. First, we collected emissions from living Asclepias syriaca roots by dynamic headspace sampling. This method showed that attacked A. syriaca plants emit five times higher levels of volatiles than control plants. Secondly, we used a solid phase micro-extraction (SPME) method to sample the full pool of volatiles in roots for genetic correlations of volatile biosynthesis.5. Field experiments showed that entomopathogenic nematodes prevent the loss of biomass to root herbivory. Additionally, suppression of root herbivores was mediated directly by cardenolides and indirectly by the attraction of nematodes. Genetic families of plants with high cardenolides benefited less from nematodes compared to low-cardenolide families, suggesting that direct and indirect defences may be redundant. Although constitutive and induced root defences traded off within each strategy (for both direct and indirect defence, cardenolides and VOCs, respectively), we found no trade-off between the two strategies.6. Synthesis. Constitutive expression and inducibility of defences may trade off because of resource limitation or because they are redundant. Direct and indirect defences do not trade off, likely because they may not share a limiting resource and because independently they may promote defence across the patchiness of herbivore attack and nematode presence in the field. Indeed, some redundancy in strategies may be necessary to increase effective defence, but for each strategy, an economy of deployment reduces overall costs.