152 resultados para Loss of control.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Screening tests for subclinical cardiovascular disease, such as markers of atherosclerosis, are increasingly used in clinical prevention to identify individuals at high cardiovascular risk. Being aware of these test results might also enhance patient motivation to change unhealthy behaviors but the effectiveness of such a screening strategy has been poorly studied. METHODS: The CAROtid plaque Screening trial on Smoking cessation (CAROSS) is a randomized controlled trial in 530 regular smokers aged 40-70 years to test the hypothesis that carotid plaque screening will influence smokers' behavior with an increased rate of smoking cessation (primary outcome) and an improved control of other cardiovascular risk factors (secondary outcomes) after 1-year follow-up. All smokers will receive a brief advice for smoking cessation,and will subsequently be randomly assigned to either the intervention group (with plaques screening) or the control group (without plaque screening). Carotid ultrasound will be conducted with a standard protocol. Smokers with at least one carotid plaque will receive pictures of their own plaques with a structured explanation on the general significance of plaques. To ensure equal contact conditions, smokers not undergoing ultrasound and those without plaque will receive a relevant explanation on the risks associated with tobacco smoking. Study outcomes will be compared between smokers randomized to plaque screening and smokers not submitted to plaque screening. SUMMARY: This will be the first trial to assess the impact of carotid plaque screening on 1-year smoking cessation rates and levels of control of other cardiovascular risk factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel (CNGC) CNGCb gene from Physcomitrella patens and its Arabidopsis thaliana ortholog CNGC2, encode a component of cyclic nucleotide gated Ca(2+) channels that act as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to an HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild-type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused a hyper-thermoresponsive Ca(2+) influx and altered Ca(2+) signaling. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermoresponsive Ca(2+) channels in wild-type cells. Deletion of CNGCb led to a total absence of one and increased the open probability of the remaining two thermoresponsive Ca(2+) channels. Thus, CNGC2 and CNGCb are expected to form heteromeric Ca(2+) channels with other related CNGCs. These channels in the plasma membrane respond to increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fatty acid oxygenation up-regulated 2 (fou2) mutant in Arabidopsis thaliana creates a gain-of-function allele in a non-selective cation channel encoded by the Two Pore Channel 1 (TPC1) gene. This mutant genetically implicates cation fluxes in the control of the positive feedback loop whereby jasmonic acid (JA) stimulates its own synthesis. In this study we observed extensive transcriptome reprogramming in healthy fou2 leaves closely resembling that induced by treatment with methyl jasmonate, biotic stresses and the potassium starvation response. Proteomic analysis of fou2 leaves identified increased levels of seven biotic stress- and JA-inducible proteins. In agreement with these analyses, epistasis studies performed by crossing fou2 with aos indicated that elevated levels of JA in fou2 are the major determinant of the mutant phenotype. In addition, generation of fou2 aba1-5, fou2 etr1-1 and fou2 npr1-1 double mutants showed that the fou2 phenotype was only weakly affected by ABA levels and unaffected by mutations in NPR1 and ETR1. The results now suggest possible mechanisms whereby fou2 could induce JA synthesis/signaling early in the wound response. In contrast to fou2, transcriptome analysis of a loss-of-function allele of TPC1, tpc1-2, revealed no differential expression of JA biosynthesis genes in resting leaves. However, the analysis disclosed reduced mRNA levels of the pathogenesis-related genes PDF1.2a and THI2.1 in healthy and diseased tpc1-2 leaves. The results suggest that wild-type TPC1 contributes to their expression by mechanisms somewhat different from those affecting their expression in fou2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: In the Rd1 and Rd10 mouse models of retinitis pigmentosa, a mutation in the Pde6ß gene leads to the rapid loss of photoreceptors. As in several neurodegenerative diseases, Rd1 and Rd10 photoreceptors re-express cell cycle proteins prior to death. Bmi1 regulates cell cycle progression through inhibition of CDK inhibitors, and its deletion efficiently rescues the Rd1 retinal degeneration. The present study evaluates the effects of Bmi1 loss in photoreceptors and Müller glia, since in lower vertebrates, these cells respond to retinal injury through dedifferentiation and regeneration of retinal cells. Methods: Cell death and Müller cell activation were analyzed by immunostaining of wild-type, Rd1 and Rd1;Bmi1-/- eye sections during retinal degeneration, between P10 and P20. Lineage tracing experiments use the GFAP-Cre mouse (JAX) to target Müller cells. Results: In Rd1 retinal explants, inhibition of CDKs reduces the amount of dying cells. In vivo, Bmi1 deletion reduces CDK4 expression and cell death in the P15 Rd1;Bmi1-/- retina, although cGMP accumulation and TUNEL staining are detected at the onset of retinal degeneration (P12). This suggests that another process acts in parallel to overcome the initial loss of Rd1;Bmi1-/- photoreceptors. We demonstrate here that Bmi1 loss in the Rd1 retina enhances the activation of Müller glia by downregulation of p27Kip1, that these cells migrate toward the ONL, and that some cells express the retinal progenitor marker Pax6 at the inner part of the ONL. These events are also observed, but to a lesser extent, in Rd1 and Rd10 retinas. At P12, EdU incorporation shows proliferating cells with atypical elongated nuclei at the inner border of the Rd1;Bmi1-/- ONL. Lineage tracing targeting Müller cells is in process and will determine the implication of this cell population in the maintenance of the Rd1;Bmi1-/- ONL thickness and whether downregulation of Bmi1 in Rd10 Müller cells equally stimulates their activation. Conclusions: Our results show a dual role of Bmi1 deletion in the rescue of photoreceptors in the Rd1;Bmi1-/- retina. Indeed, the loss of Bmi1 reduces Rd1 retinal degeneration, and as well, enhances the Müller glia activation. In addition, the emergence of cells expressing a retinal progenitor marker in the ONL suggests Bmi1 as a blockade to the regeneration of retinal cells in mammals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The functional interaction between fibroblast growth factor 23 (FGF-23) and Klotho in the control of vitamin D and phosphate homeostasis is manifested by the largely overlapping phenotypes of Fgf23- and Klotho-deficient mouse models. However, to date, targeted inactivation of FGF receptors (FGFRs) has not provided clear evidence for an analogous function of FGFRs in this process. Here, by means of pharmacologic inhibition of FGFRs, we demonstrate their involvement in renal FGF-23/Klotho signaling and elicit their role in the control of phosphate and vitamin D homeostasis. Specifically, FGFR loss of function counteracts renal FGF-23/Klotho signaling, leading to deregulation of Cyp27b1 and Cyp24a1 and the induction of hypervitaminosis D and hyperphosphatemia. In turn, this initiates a feedback response leading to high serum levels of FGF-23. Further, we show that FGFR inhibition blocks Fgf23 transcription in bone and that this is dominant over vitamin D-induced Fgf23 expression, ultimately impinging on systemic FGF-23 protein levels. Additionally, we identify Fgf23 as a specific target gene of FGF signaling in vitro. Thus, in line with Fgf23- and Klotho-deficient mouse models, our study illustrates the essential function of FGFRs in the regulation of vitamin D and phosphate levels. Further, we reveal FGFR signaling as a novel in vivo control mechanism for Fgf23 expression in bone, suggesting a dual function of FGFRs in the FGF-23/Klotho pathway leading to vitamin D and phosphate homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Epilepsy surgery in young children with focal lesions offers a unique opportunity to study the impact of severe seizures on cognitive development during a period of maximal brain plasticity, if immediate control can be obtained. We studied 11 children with early refractory epilepsy (median onset, 7.5 months) due to focal lesion who were rendered seizure-free after surgery performed before the age of 6 years. Methods: The children were followed prospectively for a median of 5 years with serial neuropsychological assessments correlated with electroencephalography (EEG) and surgery-related variables. Results: Short-term follow-up revealed rapid cognitive gains corresponding to cessation of intense and propagated epileptic activity [two with early catastrophic epilepsy; two with regression and continuous spike-waves during sleep (CSWS) or frontal seizures]; unchanged or slowed velocity of progress in six children (five with complex partial seizures and frontal or temporal cortical malformations). Longer-term follow-up showed stabilization of cognitive levels in the impaired range in most children and slow progress up to borderline level in two with initial gains. Discussion: Cessation of epileptic activity after early surgery can be followed by substantial cognitive gains, but not in all children. In the short term, lack of catch-up may be explained by loss of retained function in the removed epileptogenic area; in the longer term, by decreased intellectual potential of genetic origin, irreversible epileptic damage to neural networks supporting cognitive functions, or reorganization plasticity after early focal lesions. Cognitive recovery has to be considered as a "bonus," which can be predicted in some specific circumstances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiotherapy is widely used to treat human cancer. Patients locally recurring after radiotherapy, however, have increased risk of metastatic progression and poor prognosis. The clinical management of postradiation recurrences remains an unresolved issue. Tumors growing in preirradiated tissues have an increased fraction of hypoxic cells and are more metastatic, a condition known as tumor bed effect. The transcription factor hypoxia inducible factor (HIF)-1 promotes invasion and metastasis of hypoxic tumors, but its role in the tumor bed effect has not been reported. Here, we show that tumor cells derived from SCCVII and HCT116 tumors growing in a preirradiated bed, or selected in vitro through repeated cycles of severe hypoxia, retain invasive and metastatic capacities when returned to normoxia. HIF activity, although facilitating metastatic spreading of tumors growing in a preirradiated bed, is not essential. Through gene expression profiling and gain- and loss-of-function experiments, we identified the matricellular protein CYR61 and alphaVbeta5 integrin as proteins cooperating to mediate these effects. The anti-alphaV integrin monoclonal antibody 17E6 and the small molecular alphaVbeta3/alphaVbeta5 integrin inhibitor EMD121974 suppressed invasion and metastasis induced by CYR61 and attenuated metastasis of tumors growing within a preirradiated field. These results represent a conceptual advance to the understanding of the tumor bed effect and identify CYR61 and alphaVbeta5 integrin as proteins that cooperate to mediate metastasis. They also identify alphaV integrin inhibition as a potential therapeutic approach for preventing metastasis in patients at risk for postradiation recurrences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Intracerebral hemorrhage (ICH) is a subtype of stroke characterized by a haematoma within the brain parenchyma resulting from blood vessel rupture and with a poor outcome. In ICH, the blood entry into the brain triggers toxicity resulting in a substantial loss of neurons and an inflammatory response. At the same time, blood-brain barrier (BBB) disruption increases water content (edema) leading to growing intracranial pressure, which in turn worsens neurological outcome. Although the clinical presentation is similar in ischemic and hemorrhagic stroke, the treatment is different and the stroke type needs to be determined beforehand by imaging which delays the therapy. C-Jun N-terminal kinases (JNKs) are a family of kinases activated in response to stress stimuli and involved in several pathways such as apoptosis. Specific inhibition of JNK by a TAT-coupled peptide (XG-102) mediates strong neuroprotection in several models of ischemic stroke in rodents. Recently, we have observed that the JNK pathway is also activated in a mouse model of ICH, raising the question of the efficacy of XG-102 in this model. Method: ICH was induced in the mouse by intrastriatal injection of bacterial collagenase (0,1 U). Three hours after surgery, animals received an intravenous injection of 100 mg/kg of XG-102. The neurological outcome was assessed everyday until sacrifice using a score (from 0 to 9) based on 3 behavioral tests performed daily until sacrifice. Then, mice were sacrificed at 6 h, 24 h, 48 h, and 5d after ICH and histological studies performed. Results: The first 24 h after surgery are critical in our ICH mice model, and we have observed that XG-102 significantly improves neurological outcome at this time point (mean score: 1,8 + 1.4 for treated group versus 3,4+ 1.8 for control group, P<0.01). Analysis of the lesion volume revealed a significant decrease of the lesion area in the treated group at 48h (29+ 11mm3 in the treated group versus 39+ 5mm3 in the control group, P=0.04). XG-102 mainly inhibits the edema component of the lesion. Indeed, a significant inhibition Journal of Cerebral Blood Flow & Metabolism (2009) 29, S490-S493 & 2009 ISCBFM All rights reserved 0271-678X/09 $32.00 www.jcbfm.com of the brain swelling was observed in treated animals at 48h (14%+ 13% versus 26+ 9% in the control group, P=0.04) and 5d (_0.3%+ 4.5%versus 5.1+ 3.6%in the control group, P=0.01). Conclusions: Inhibition of the JNK pathway by XG- 102 appears to lead to several beneficial effects. We can show here a significant inhibition of the cerebral edema in the ICH model providing a further beneficial effect of the XG-102 treatment, in addition to the neuroprotection previously described in the ischemic model. This result is of interest because currently, clinical treatment for brain edema is limited. Importantly, the beneficial effects observed with XG-102 in models of both stroke types open the possibility to rapidly treat stroke patients before identifying the stroke subtype by imaging. This will save time which is precious for stroke outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although platelet cytosolic calcium has been shown to decrease during pharmacological treatment of hypertension, there is no evidence that cytosolic calcium also falls during a nonpharmacological reduction in blood pressure. To provide such evidence, we examined prospectively the relation between platelet cytosolic calcium and ambulatory blood pressure during weight reduction in moderately overweight (body mass index [BMI] greater than 25), mildly hypertensive individuals. The experimental group (responders: BMI reduction greater than 5%) consisted of 19 patients who lost 8.5 +/- 2.9 kg (mean +/- SD, p less than 0.05) during a 10-week hypocaloric diet, whereas the control group (nonresponders: BMI reduction less than 5%) consisted of 12 patients who showed no relevant change in body weight (-2.0 +/- 1.3 kg) during the same period of time. The moderate weight loss of the responders decreased blood pressure by 14/5 mm Hg (p less than 0.05), as measured by ambulatory monitoring, which renders a placebo effect unlikely. This nonpharmacological reduction in blood pressure was accompanied by a proportional 11% decrease (p less than 0.05) in platelet cytosolic calcium and also by significant (p less than 0.05) decreases in plasma catecholamines and serum cholesterol. These findings establish the concept of a nonpharmacological reduction in free cytosolic platelet calcium in humans and add further evidence suggesting a link between intracellular calcium homeostasis and blood pressure regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The brain tissue is made of neuronal and glial cells generated in the germinal layer bordering the ventricles. These cells divide, differentiate and migrate following specific pathways. The specification of GABAergic interneurons and glutamatergic neurons has been broadly studied but little is known about the origin, the fate and the function of early glial cells in the embryonic telencephalon. It has been commonly accepted since long that the glial cells and more particularly the astrocytes were generated after neurogenesis from the dorsal telencephalon. However, our work shows that, unlike what was previously thought, numerous glial cells (astroglia and polydendrocytes) are generated during neurogenesis in the early embryonic stages from E14.5 to E16.5, and originate from the ventral Nkx2.1-expressing precursors instead. NK2 homeobox 1 (Nkx2.1) is a member of the NK2 family of homeodomaincontaining transcription factors. The specification of the MGE precursors requires the expression of the Nkx2.1 homeobox gene. Moreover, Nkx2.1 is previously known to regulate the specification of GABAergic interneurons and early oligodendrocytes in the ventral telencephalon. Here, in my thesis work, I have discovered that, in addition, Nkx2.1 also regulates astroglia and polydendrocytes differentiation. The use of Nkx2.1 antibody and Nkx2.1 riboprobe have revealed the presence of numerous Nkx2.1-positive cells that express astroglial markers (like GLAST and GFAP) in the entire embryonic brain. Thus, to selectively fate map MGE-derived GABAergic interneurons and glia, we crossed Nkx2.1-Cre mice, Glast-Cre ERT+/- inducible mice and NG2-Cre mice with the Cre reporter Rosa26-lox-STOP-lox-YFP (Rosa26-YFP) mice. The precise origin of Nkx2.1-positive astroglia has been directly ascertained by combining glial immunostaining and focal electroporation of the pCAG-GS-EGFP plasmids into the subpallial domains of organotypic slices, as well as, by using in vitro neurosphere experiments and in utero electroporation of the pCAG-GS-tomato plasmid into the ventral pallium of E14.5 Nkx2.1-Cre+/Rosa-YFP+/- embryos. We have, thus, confirmed that the three germinal regions of the ventral telencephalon i.e. the MGE, the AEP/POA and the triangular septal nucleus are able to generate early astroglial cells. Moreover, immunohistochemistry for several astroglial cells and polydendrocyte markers, both in the Nkx2.1-/- and control embryos and in the neurospheres, has revealed a severe loss of both glial cell types in the Nkx2.1 mutants. We found that the loss of glia corresponded to a decrease of Nkx2.1-derived precursor division capacity and glial differentiation. There was a drastic decrease of BrdU+ dividing cells labeled for Nkx2.1 in the MGE*, the POA* and the septal nucleus* of Nkx2.1 mutants. In addition, we noticed that while some remaining Nkx2.1+ precursors still succeeded to give rise to post-mitotic neurons in vitro and in vivo in the Nkx2.1-/-, they completely lost the capacity to differentiate in astrocytes. Altogether, these observations indicate for the first time that the transcription factor Nkx2.1 regulates the proliferation and differentiation of precursors in three subpallial domains that generate early embryonic astroglia and polydendrocytes. Furthermore, in order to investigate the potential function of these early Nkx2.1- derived glia, we have performed multiple immunohistochemical stainings on Nkx2.1-/- and wild-type animals, and Nkx2.1-Cre mice that were crossed to Rosa-DTA+/- mice in which the highly toxic diphtheria toxin aided to selectively deplete a majority of the Nkx2.1-derived cells. Interestingly, in these two mutants, we observed a drastic and significant loss of GFAP+, GLAST+, NG2+ and S100ß+ astroglial cells at the telencephalic midline and in the medial cortical areas. This cells loss could be directly correlated with severe axonal guidance defects observed in the corpus callosum (CC), the hippocampal commissure (HIC), the fornix (F) and the anterior commissure (AC). Axonal guidance is a key step allowing neurons to form specific connections and to become organized in a functional network. The contribution of guidepost cells inside the CC and the AC in mediating the growth of commissural axons have until now been attributed to specialized midline guidepost astroglia. Previous published results in our group have unravelled that, during embryonic development, the CC is populated in addition to astroglia by numerous glutamatergic and GABAergic guidepost neurons that are essential for the correct midline crossing of callosal axons. Therefore, the relative contribution of individual neuronal or glial populations towards the guidance of commissural axons remains largely to be investigated to understand guidance mechanisms further. Thus, we crossed Nkx2.1-Cre mice with NSE-DTA+/- mice that express the diphtheria toxin only in neurons and allowed us to selectively deplete Nkx2.1-derived GABAergic neurons. Interestingly, in the Nkx2.1-/- mice, the CC midline was totally disorganized and the callosal axons partly lost their orientation, whereas in the Nkx2.1Cre+/Rosa-DTA+/- and the Nkx2.1Cre+/NSE-DTA+/- mice, the axonal organization of the CC was not affected. In the three types of mice, hippocampal axons of the fornix were not properly fasciculated and formed disoriented bundles through the septum. Additionally, the AC formation was completely absent in Nkx2.1-/- mice and the AC was divided into two/three separate paths in the Nkx2.1Cre+/Rosa-DTA+/- mice that project in wrong territories. On the other hand, the AC didn't form or was reduced to a relatively narrower tract in the Nkx2.1Cre+/NSE-DTA+/- mice as compared to wild-type AC. These results clearly indicate that midline Nkx2.1-derived cells play a major role in commissural axons pathfinding and that both Nkx2.1-derived guidepost neurons and glia are necessary elements for the correct development of these commissures. Furthermore, during our investigations on Nkx2.1-/- and Nkx2.1Cre+/Rosa-DTA+/- mice, we noticed similar and severe defects in the erythrocytes distribution and the blood vessels network morphology in the embryonic brain of both mutants. As the Cre-mediated recombination was never observed to occur in the blood vessels of Nkx2.1-Cre mice, we inferred that the vessels defects observed were due to the loss of Nkx2.1-derived cells and not to the cells autonomous effects of Nkx2.1 in regulating endothelial cell precursors. Thereafter, the respective contribution of individual Nkx2.1-regulated neuronal or glial populations in the blood vessels network building were studied with the use of transgenic mice strains. Indeed, the use of Nkx2.1Cre+/NSE-DTA+/- mice indicated that the Nkx2.1-derived neurons were not implicated in this process. Finally, to discriminate between the two Nkx2.1-derived glial cell populations, the GLAST+ astroglia and the NG2+ polydendrocytes, an NG2-Cre mouse strain crossed to the Rosa-DTA+/- mice was used. In that mutant, the blood vessel network and the erythrocytes distribution were similarly affected as observed in Nkx2.1Cre+/Rosa-DTA+/- animals. Therefore, this result indicates that most probably, the NG2+ polydendrocytes are involved in helping to build the vessels network in the brain. Taken altogether, these observations show that during brain development, Nkx2.1- derived embryonic glial cells act as guidepost cells on the guidance of axons as well as forming vessels. Both Nkx2.1-regulated guidepost GABAergic neurons and glia collaborate to guide growing commissural axons, while polydendrocytes are implicated in regulating brain angiogenesis. - Le tissu cérébral est composé de cellules neuronales et gliales générées dans les couches germinales qui bordent les ventricules. Ces cellules se divisent, se différencient et migrent selon des voies particulières. La spécification des interneurones GABAergiques et des neurones glutamatergiques a été largement étudiée, par contre, l'origine, le destin et la fonction des cellules gliales précoces du télencéphale embryonnaire restent peu élucidées. Depuis longtemps, il était communément accepté que les cellules gliales, et plus particulièrement les astrocytes, sont générés après la neurogénèse à partir du télencéphale dorsal. Toutefois, notre travail montre que de nombreuses cellules gliales sont générées à partir de précurseurs ventraux qui expriment le gène Nkx2.1, entre E14.5 et E16.5, c'est-à dire,à des stades embryonnaires très précoces. Le gène NK2 homéobox 1 (Nkx2.1) appartient à une famille de facteurs de transcription appelée NK2. Il s'agit de protéines qui contiennent un homéo-domaine. La spécification des précurseurs de la MGE requiert l'expression du gène homéobox Nkx2.1. De plus, la fonction du gène Nkx2.1 dans la régulation de la spécification des interneurones GABAergiques et des oligodendrocytes dans le télencéphale ventral était déjà connue. Au cours de mon travail de thèse, j'ai également mis en évidence que, Nkx2.1 régule aussi les étapes de prolifération et de différenciation de divers sous-types de cellules gliales soit de type astrocytes ou bien polydendrocytes. L'utilisation d'un anticorps contre la protéine Nkx2.1 ainsi qu'une sonde à ribonucléotides contre l'ARN messager du gène Nkx2.1 ont révélé la présence de nombreuses cellules positives pour Nkx2.1 qui exprimaient des marqueurs astrocytaires (comme GLAST et GFAP) dans le télencéphale embryonnaire. Afin de déterminer de manière sélective le sort des interneurones GABAergiques, des polydendrocytes et des astrocytes dérivés de la MGE, nous avons croisé soit des souris Nkx2.1-Cre, des souris Glast-Cre ERT+/- inductibles ou bien des souris NG2-Cre avec des souris Rosa26-lox-STOP-lox-YFP (Rosa26-YFP) Cre rapportrices. L'origine précise des astroglies positives pour Nkx2.1 a été directement établie en combinant une coloration immunologique pour les glies et une électroporation focale d'un plasmide pCAG-GS-EGFP dans les domaines subpalliaux de tranches organotypiques, puis également, par des cultures de neurosphères in vitro et des expériences d'électroporation in utero d'un plasmide pCAG-GS-tomato dans le pallium ventral d'embryons Nkx2.1-Cre+/Rosa- YFP+/- au stade E14.5. Nous avons donc confirmé que les trois régions germinales du télencéphale ventral, c'est-à-dire, la MGE, l'AEP/POA et le noyau triangulaire septal sont capables de générer des cellules astrogliales. D'autre part, l'immunohistochimie pour plusieurs marqueurs d'astrocytes ou de polydendrocytes, dans les embryons Nkx2.1-/- et contrôles ainsi que dans les neurosphères, a révélé une sévère perte de ces deux types gliaux chez les mutants. Nous avons trouvé que la perte de glies correspondait à une diminution de la capacité de division des précurseurs dérivés de Nkx2.1, ainsi que l'incapacité de ces précurseurs de se différencier en cellules gliales. Nous avons en effet observé une diminution importante des cellules BrdU+ en division exprimant Nkx2.1dans la MGE*, la POA* et le noyau septal* des mutants pour Nkx2.1. D'autre part, nous avons pu mettre en évidence aussi bien in vitro, qu'in vivo, que certains précurseurs Nkx2.1+ chez le mutant gardent la capacité à se différencier en neurones tandis qu'ils perdent celle de se différencier en cellules gliales. Prises dans leur ensemble, ces observations indiquent pour la première fois que le facteur de transcription Nkx2.1 régule les étapes de prolifération et de différentiation des précurseurs des trois domaines subpalliaux qui génèrent les astroglies et polydendrocytes embryonnaires précoces. Par la suite, dans le but de comprendre la fonction potentielle de ces glies précoces, nous avons procédé à de multiples colorations immunohistochimiques sur des animaux Nkx2.1-/- et sauvages, ainsi que sur des souris Nkx2.1-Cre croisées à des souris Rosa-DTA+/- dans lesquelles la toxine diphthérique hautement toxique a permis de supprimer sélectivement la majorité des cellules dérivées de Nkx2.1. De manière intéressante, nous avons observé dans ces deux mutants, une perte drastique et significative de cellules astrogliales GFAP+, GLAST+ et polydendrocytaires NG2+ et S100ß+ dans le télencéphale, à la midline et dans les aires corticales médianes. Ces pertes ont pu être directement corrélées avec des défauts de guidage axonal observés dans le corps calleux (CC), la commissure hippocampique (HIC), le fornix (F) et la commissure antérieure (AC). Le guidage axonal est une étape clé permettant aux neurones de former des connections spécifiques et de s'organiser dans un réseau fonctionnel. La contribution des cellules « guidepost » dans le CC et dans la AC comme médiateurs de la croissance des axones commissuraux à jusqu'à aujourd'hui été attribuée spécifiquement à des astroglies « guidepost » de la midline. Des résultats publiés précédemment dans notre groupe, ont permis de montrer que, pendant le développement embryonnaire, le CC est peuplé en plus de la glie par de nombreux neurones « guidepost » glutamatergiques et GABAergiques qui sont essentiels pour le croisement correct des axones callosaux à la midline. Ainsi, la contribution relative des populations individuelles neuronales ou gliales pour le guidage des axones commissuraux demande à être approfondie afin de mieux comprendre les mécanismes de guidage. A ces fins, nous avons croisé des souris Nkx2.1-Cre avec des souris NSE-DTA+/- qui expriment la toxine diphthérique uniquement dans les neurones et ainsi, nous avons pu sélectivement supprimer les neurones dérivés de domaines Nkx2.1+. Dans les souris Nkx2.1-/-,nous avons découvert que le CC était désorganisé avec des axones callosaux perdant partiellement leur orientation, alors que dans les souris Nkx2.1Cre+/Rosa-DTA+/- et Nkx2.1Cre+/NSE-DTA+/-, l'organisation axonale n'était pas affectée. De plus, les faisceaux hippocampiques du fornix étaient défasciculés dans les trois types de mutants. Par ailleurs, la formation de la commissure antérieure (AC) était complètement absente dans les souris Nkx2.1-/- d'une part, et d'autre part, celle-ci était divisée en deux à trois voies séparées dans les souris Nkx2.1Cre+/Rosa-DTA+/-. Finalement, la AC était soit absente, soit réduite de manière ne former plus qu'un faisceau relativement plus étroit dans les souris Nkx2.1Cre+/NSE-DTA+/- en comparaison avec la AC sauvage. Ces derniers résultats indiquent clairement que les cellules dérivées de Nkx2.1 à la midline, jouent un rôle majeur dans le guidage des axones commissuraux et que, autant les neurones, que les astrocytes « guidepost » dérivés de Nkx2.1, sont des éléments nécessaires au développement correct de ces commissures. En outre, lors de nos investigations sur les souris Nkx2.1-/- et Nkx2.1Cre+/Rosa-DTA+/-, nous avons remarqués des défauts sévères et similaires dans la distribution des erythrocytes et dans la morphologie du réseau de vaisseaux sanguins dans le cerveau embryonnaire des deux mutants précités. Puisque nous n'avons jamais observé de recombinaison de la Cre recombinase dans les vaisseaux sanguins des souris Nkx2.1Cre, nous en avons déduit que les défauts de vaisseaux observés étaient dus à la perte de cellules dérivées de Nkx2.1. Il existerait donc en plus de la fonction cellulaire autonome de Nkx2.1 reconnue pour régulée directement la spécification des cellules endothéliales, une fonction indirecte de Nkx2.1. Afin de déterminer la contribution respective des populations individuelles neuronales ou gliales régulées par Nkx2.1 dans la construction du réseau de vaisseaux sanguins, nous avons utilisé diverses lignées de souris transgéniques. L'utilisation de souris Nkx2.1Cre+/NSE-DTA+/- a indiqué que les neurones dérivés de Nkx2.1 n'étaient pas impliqués dans ce processus. Finalement, afin de discriminer entre les deux populations de cellules gliales dérivées de Nkx2.1, les astroglies et les polydendrocytes, nous avons croisé une lignée de souris NG2-Cre avec des souris Rosa-DTA+/-. Dans ce dernier mutant, le réseau de vaisseaux sanguins du cortex ainsi que la distribution des erythrocytes étaient affectés de la même manière que dans le cortex des souris Nkx2.1Cre+/Rosa-DTA+/-. Par conséquent, ce résultat indique que très probablement, les polydendrocytes NG2+ sont impliqués dans la mise en place du réseau de vaisseaux dans le cerveau. Prises dans leur ensemble, ces observations montrent que durant le développement embryonnaire du cerveau, des sous-populations de glies régulées par Nkx2.1 jouent un rôle de cellules « guidepost » dans le guidage des axones, ainsi que des vaisseaux. Les polydendrocytes sont impliquées dans la régulation de l'angiogenèse tandis que, autant les neurones GABAergiques que les astrocytes collaborent dans le guidage des axones commissuraux en croissance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PARbZip proteins (proline and acidic amino acid-rich basic leucine zipper) represent a subfamily of circadian transcription factors belonging to the bZip family. They are transcriptionally controlled by the circadian molecular oscillator and are suspected to accomplish output functions of the clock. In turn, PARbZip proteins control expression of genes coding for enzymes involved in metabolism, but also expression of transcription factors which control the expression of these enzymes. For example, these transcription factors control vitamin B6 metabolism, which influences neurotransmitter homeostasis in the brain, and loss of PARbZip function leads to spontaneous and sound-induced epilepsy that are frequently lethal. In liver, kidney, and small intestine, PAR bZip transcription factors regulate phase I, II, and III detoxifying enzymes in addition to the constitutive androstane receptor (CAR), one of the principal sensors of xenobiotics. Indeed, knockout mice for the three PARbZip transcription factors are deficient in xenobiotic detoxification and display high morbidity, high mortality, and accelerated aging. Finally, less than 20% of these animals reach an age of 1 year. Accumulated evidences suggest that PARbZip transcription factors play a role of relay, coupling circadian metabolism of xenobiotic and probably endobiotic substances to the core clock circuitry of local circadian oscillators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many animal species face periods of chronic nutritional stress during which the individuals must continue to develop, grow, and/or reproduce despite low quantity or quality of food. Here, we use experimental evolution to study adaptation to such chronic nutritional stress in six replicate Drosophila melanogaster populations selected for the ability to survive and develop within a limited time on a very poor larval food. In unselected control populations, this poor food resulted in 20% lower egg-to-adult viability, 70% longer egg-to-adult development, and 50% lower adult body weight (compared to the standard food on which the flies were normally maintained). The evolutionary changes associated with adaptation to the poor food were assayed by comparing the selected and control lines in a common environment for different traits after 29-64 generations of selection. The selected populations evolved improved egg-to-adult viability and faster development on poor food. Even though the adult dry weight of selected flies when raised on the poor food was lower than that of controls, their average larval growth rate was higher. No differences in proportional pupal lipid content were observed. When raised on the standard food, the selected flies showed the same egg-to-adult viability and the same resistance to larval heat and cold shock as the controls and a slightly shorter developmental time. However, despite only 4% shorter development time, the adults of selected populations raised on the standard food were 13% smaller and showed 20% lower early-life fecundity than the controls, with no differences in life span. The selected flies also turned out less tolerant to adult malnutrition. Thus, fruit flies have the genetic potential to adapt to poor larval food, with no detectable loss of larval performance on the standard food. However, adaptation to larval nutritional stress is associated with trade-offs with adult fitness components, including adult tolerance to nutritional stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A role for glucose in the control of feeding has been proposed, but its precise physiological importance is unknown. Here, we evaluated feeding behavior in glut2-null mice, which express a transgenic glucose transporter in their beta-cells to rescue insulin secretion (ripglut1;glut2-/- mice). We showed that in the absence of GLUT2, daily food intake was increased and feeding initiation and termination following a fasting period were abnormal. This was accompanied by suppressed regulation of hypothalamic orexigenic and anorexigenic neuropeptides expression during the fast-to-refed transition. In these conditions, however, there was normal regulation of the circulating levels of insulin, leptin, or glucose but a loss of regulation of plasma ghrelin concentrations. To evaluate whether the abnormal feeding behavior was due to suppressed glucose sensing, we evaluated feeding in response to intraperitoneal or intracerebroventricular glucose or 2-deoxy-D-glucose injections. We showed that in GLUT2-null mice, feeding was no longer inhibited by glucose or activated by 2-deoxy-D-glucose injections and the regulation of hypothalamic neuropeptide expression by intracerebroventricular glucose administration was lost. Together, these data demonstrate that absence of GLUT2 suppressed the function of central glucose sensors, which control feeding probably by regulating the hypothalamic melanocortin pathway. Furthermore, inactivation of these glucose sensors causes overeating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND:: Although cell therapy is a promising approach after cerebral cortex lesion, few studies assess quantitatively its behavioral gain in non-human primates. Furthermore, implantations of fetal grafts of exogenous stem cells are limited by safety and ethical issues. OBJECTIVE:: To test in non-human primates the transplantation of autologous adult neural progenitor cortical cells with assessment of functional outcome. METHODS:: Seven adult macaque monkeys were trained to perform a manual dexterity task, before the hand representation in motor cortex was chemically lesioned unilaterally. Five monkeys were used as control, compared to two monkeys subjected to different autologous cells transplantation protocols performed at different time intervals. RESULTS:: After lesion, there was a complete loss of manual dexterity in the contralesional hand. The five "control" monkeys recovered progressively and spontaneously part of their manual dexterity, reaching a unique and definitive plateau of recovery, ranging from 38% to 98% of pre-lesion score after 10 to 120 days. The two "treated" monkeys reached a first spontaneous recovery plateau at about 25 and 40 days post-lesion, representing 35% and 61% of the pre-lesion performance, respectively. In contrast to the controls, a second recovery plateau took place 2-3 months after cell transplantation, corresponding to an additional enhancement of functional recovery, representing 24 and 37% improvement, respectively. CONCLUSIONS:: These pilot data, derived from two monkeys treated differently, suggest that, in the present experimental conditions, autologous adult brain progenitor cell transplantation in non-human primate is safe and promotes enhancement of functional recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transcriptional coregulators control the activity of many transcription factors and are thought to have wide-ranging effects on gene expression patterns. We show here that muscle-specific loss of nuclear receptor corepressor 1 (NCoR1) in mice leads to enhanced exercise endurance due to an increase of both muscle mass and of mitochondrial number and activity. The activation of selected transcription factors that control muscle function, such as MEF2, PPARβ/δ, and ERRs, underpins these phenotypic alterations. NCoR1 levels are decreased in conditions that require fat oxidation, resetting transcriptional programs to boost oxidative metabolism. Knockdown of gei-8, the sole C. elegans NCoR homolog, also robustly increased muscle mitochondria and respiration, suggesting conservation of NCoR1 function. Collectively, our data suggest that NCoR1 plays an adaptive role in muscle physiology and that interference with NCoR1 action could be used to improve muscle function.