116 resultados para LOW LEVEL LASER THERAPY
Resumo:
OBJECTIVES: To assess the in vitro susceptibility of Actinobaculum schaalii to 12 antimicrobial agents as well as to dissect the genetic basis of fluoroquinolone resistance. METHODS: Forty-eight human clinical isolates of A. schaalii collected in Switzerland and France were studied. Each isolate was identified by 16S rRNA sequencing. MICs of amoxicillin, ceftriaxone, gentamicin, vancomycin, clindamycin, linezolid, ciprofloxacin, levofloxacin, moxifloxacin, co-trimoxazole, nitrofurantoin and metronidazole were determined using the Etest method. Interpretation of results was made according to EUCAST clinical breakpoints. The quinolone-resistance-determining regions (QRDRs) of gyrA and parC genes were also identified and sequence analysis was performed for all 48 strains. RESULTS: All isolates were susceptible to amoxicillin, ceftriaxone, gentamicin, clindamycin (except three), vancomycin, linezolid and nitrofurantoin, whereas 100% and 85% were resistant to ciprofloxacin/metronidazole and co-trimoxazole, respectively. Greater than or equal to 90% of isolates were susceptible to the other tested fluoroquinolones, and only one strain was highly resistant to levofloxacin (MIC ?32 mg/L) and moxifloxacin (MIC 8 mg/L). All isolates that were susceptible or low-level resistant to levofloxacin/moxifloxacin (n?=?47) showed identical GyrA and ParC amino acid QRDR sequences. In contrast, the isolate exhibiting high-level resistance to levofloxacin and moxifloxacin possessed a unique mutation in GyrA, Ala83Val (Escherichia coli numbering), whereas no mutation was present in ParC. CONCLUSIONS: When an infection caused by A. schaalii is suspected, there is a risk of clinical failure by treating with ciprofloxacin or co-trimoxazole, and ?-lactams should be preferred. In addition, acquired resistance to fluoroquinolones more active against Gram-positive bacteria is possible.
Resumo:
Approaching or looming sounds (L-sounds) have been shown to selectively increase visual cortex excitability [Romei, V., Murray, M. M., Cappe, C., & Thut, G. Preperceptual and stimulus-selective enhancement of low-level human visual cortex excitability by sounds. Current Biology, 19, 1799-1805, 2009]. These cross-modal effects start at an early, preperceptual stage of sound processing and persist with increasing sound duration. Here, we identified individual factors contributing to cross-modal effects on visual cortex excitability and studied the persistence of effects after sound offset. To this end, we probed the impact of different L-sound velocities on phosphene perception postsound as a function of individual auditory versus visual preference/dominance using single-pulse TMS over the occipital pole. We found that the boosting of phosphene perception by L-sounds continued for several tens of milliseconds after the end of the L-sound and was temporally sensitive to different L-sound profiles (velocities). In addition, we found that this depended on an individual's preferred sensory modality (auditory vs. visual) as determined through a divided attention task (attentional preference), but not on their simple threshold detection level per sensory modality. Whereas individuals with "visual preference" showed enhanced phosphene perception irrespective of L-sound velocity, those with "auditory preference" showed differential peaks in phosphene perception whose delays after sound-offset followed the different L-sound velocity profiles. These novel findings suggest that looming signals modulate visual cortex excitability beyond sound duration possibly to support prompt identification and reaction to potentially dangerous approaching objects. The observed interindividual differences favor the idea that unlike early effects this late L-sound impact on visual cortex excitability is influenced by cross-modal attentional mechanisms rather than low-level sensory processes.
Resumo:
A radiochemical procedure was developed for the sequential determination of Pu and Am radioisotopes in environmental samples. The radioisotope activities were then used to assess the origin and release date of the environmental plutonium. The radioanalytical procedure is based on the separation of Pu and Am on selective extraction chromatographic resins (Eichrom TEVA and DGA). Alpha sources were prepared by electrodeposition on stainless steel discs, and the alpha emitting radionuclides (238Pu, 239,240Pu and 241Am) were measured by alpha spectrometry. For the determination of the beta emitting 241Pu, the Pu alpha source was leached in hot concentrated nitric acid and the Pu fraction further purified by extraction chromatography on a small column of TEVA resin (100 μg of resin in a pipette tip). 241Pu is then measured by ultra low level liquid scintillation counting. Due to the lack of reference material for 241Pu, the proposed radiochemical method was nevertheless validated using four IAEA reference sediments with information values of 241Pu. The proposed method was then used to determine the 238Pu, 239,240Pu, 241Pu and 241Am activity concentrations in alpine soils of France and Switzerland. The soil is the primary receptor of the atmospheric radioactive fallout and, because of the strong binding interaction with soils particles, the isotopes are little fractionated. Therefore, the activity ratios 241Pu/239+240Pu and 238Pu/239,240Pu in soil samples were used to determine the origin (source) and date of the Pu contamination in the investigated alpine sites. The 241Pu/239,240Pu and 238Pu/239,240Pu activity ratios confirmed that the main origin of Pu in the alpine soils was the global fallout from the nuclear bomb tests (NBT) in the fifties and sixties. Furthermore, the 241Pu/241Am activity ratios were used to determine the age of the Pu contamination, which is also an important data for distinguishing the Pu sources. The estimation of the date of the contamination, by the 241Pu/241Am age-dating method, further confirmed the NBT as the Pu source. However, the 241Pu/241Am dating method was limited to samples where Pu-Am fractionation was insignificant. If any, the contribution of the Chernobyl accident in the studied sites is negligible.
Resumo:
BACKGROUND: (S)-Methadone, metabolized mainly by CYP2B6, shows a wide interindividual variability in its pharmacokinetics and pharmacodynamics. METHODS: Resequencing of the CYP2B6 gene was performed in 12 and 35 selected individuals with high (S)-methadone plasma exposure and low (S)-methadone plasma exposure, respectively, from a previously described cohort of 276 patients undergoing methadone maintenance treatment. Selected genetic polymorphisms were then analyzed in the complete cohort. RESULTS: The rs35303484 (*11; c136A>G; M46V) polymorphism was overrepresented in the high (S)-methadone level group, whereas the rs3745274 (*9; c516G>T; Q172H), rs2279344 (c822+183G>A), and rs8192719 (c1294+53C>T) polymorphisms were underrepresented in the low (S)-methadone level group, suggesting an association with decreased CYP2B6 activity. Conversely, the rs3211371 (*5; c1459C>T; R487C) polymorphism was overrepresented in the low-level group, indicating an increased CYP2B6 activity. A higher allele frequency was found in the high-level group compared with the low-level group for rs3745274 (*9; c516G>T; Q172H), rs2279343 (*4; c785A>G; K262R) (together representing CYP2B6*6), rs8192719 (c1294+53C>T), and rs2279344 (c822+183G>A), suggesting their involvement in decreased CYP2B6 activity. These results should be replicated in larger independent cohorts. CONCLUSION: Known genetic polymorphisms in CYP2B6 contribute toward explaining extreme (S)-methadone plasma levels observed in a cohort of patients following methadone maintenance treatment.
Resumo:
Time is embedded in any sensory experience: the movements of a dance, the rhythm of a piece of music, the words of a speaker are all examples of temporally structured sensory events. In humans, if and how visual cortices perform temporal processing remains unclear. Here we show that both primary visual cortex (V1) and extrastriate area V5/MT are causally involved in encoding and keeping time in memory and that this involvement is independent from low-level visual processing. Most importantly we demonstrate that V1 and V5/MT come into play simultaneously and seem to be functionally linked during interval encoding, whereas they operate serially (V1 followed by V5/MT) and seem to be independent while maintaining temporal information in working memory. These data help to refine our knowledge of the functional properties of human visual cortex, highlighting the contribution and the temporal dynamics of V1 and V5/MT in the processing of the temporal aspects of visual information.
Resumo:
Small non-coding RNAs act as critical regulators of gene expression and are essential for male germ cell development and spermatogenesis. Previously, we showed that germ cell-specific inactivation of Dicer1, an endonuclease essential for the biogenesis of micro-RNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), led to complete male infertility due to alterations in meiotic progression, increased spermatocyte apoptosis and defects in the maturation of spermatozoa. To dissect the distinct physiological roles of miRNAs and endo-siRNAs in spermatogenesis, we compared the testicular phenotype of mice with Dicer1 or Dgcr8 depletion in male germ cells. Dgcr8 mutant mice, which have a defective miRNA pathway while retaining an intact endo-siRNA pathway, were also infertile and displayed similar defects, although less severe, to Dicer1 mutant mice. These included cumulative defects in meiotic and haploid phases of spermatogenesis, resulting in oligo-, terato-, and azoospermia. In addition, we found by RNA sequencing of purified spermatocytes that inactivation of Dicer1 and the resulting absence of miRNAs affected the fine tuning of protein-coding gene expression by increasing low level gene expression. Overall, these results emphasize the essential role of miRNAs in the progression of spermatogenesis, but also indicate a role for endo-siRNAs in this process.
Resumo:
The theory of small-world networks as initiated by Watts and Strogatz (1998) has drawn new insights in spatial analysis as well as systems theory. The theoryâeuro?s concepts and methods are particularly relevant to geography, where spatial interaction is mainstream and where interactions can be described and studied using large numbers of exchanges or similarity matrices. Networks are organized through direct links or by indirect paths, inducing topological proximities that simultaneously involve spatial, social, cultural or organizational dimensions. Network synergies build over similarities and are fed by complementarities between or inside cities, with the two effects potentially amplifying each other according to the âeurooepreferential attachmentâeuro hypothesis that has been explored in a number of different scientific fields (Barabási, Albert 1999; Barabási A-L 2002; Newman M, Watts D, Barabà si A-L). In fact, according to Barabási and Albert (1999), the high level of hierarchy observed in âeurooescale-free networksâeuro results from âeurooepreferential attachmentâeuro, which characterizes the development of networks: new connections appear preferentially close to nodes that already have the largest number of connections because in this way, the improvement in the network accessibility of the new connection will likely be greater. However, at the same time, network regions gathering dense and numerous weak links (Granovetter, 1985) or network entities acting as bridges between several components (Burt 2005) offer a higher capacity for urban communities to benefit from opportunities and create future synergies. Several methodologies have been suggested to identify such denser and more coherent regions (also called communities or clusters) in terms of links (Watts, Strogatz 1998; Watts 1999; Barabási, Albert 1999; Barabási 2002; Auber 2003; Newman 2006). These communities not only possess a high level of dependency among their member entities but also show a low level of âeurooevulnerabilityâeuro, allowing for numerous redundancies (Burt 2000; Burt 2005). The SPANGEO project 2005âeuro"2008 (SPAtial Networks in GEOgraphy), gathering a team of geographers and computer scientists, has included empirical studies to survey concepts and measures developed in other related fields, such as physics, sociology and communication science. The relevancy and potential interpretation of weighted or non-weighted measures on edges and nodes were examined and analyzed at different scales (intra-urban, inter-urban or both). New classification and clustering schemes based on the relative local density of subgraphs were developed. The present article describes how these notions and methods contribute on a conceptual level, in terms of measures, delineations, explanatory analyses and visualization of geographical phenomena.
Resumo:
Background Long-term treatment of primary HIV-1 infection (PHI) may allow the immune reconstitution of responses lost during the acute viremic phase and decrease of peripheral reservoirs. This in turn may represent the best setting for the use of therapeutic vaccines in order to lower the viral set-point or control of viral rebound upon ART discontinuation. Methods We investigated a cohort of 16 patients who started ART at PHI, with treatment duration of ≥4 years and persistent aviremia (<50 HIV-1 copies/ml). The cohort was characterized in terms of viral subtype, cell-associated RNA, proviral DNA and HLA genotype. Secretion of IFN-γ, IL-2 and TNF-α by CD8 T-cells was analysed by polychromatic flowcytometry using a panel of 192 HIV-1-derived epitopes. Results This cohort is highly homogenous in terms of viral subtype: 81% clade B. We identified 44 epitope-specific responses: all patients had detectable responses to >1 epitope and the mean number of responding epitopes per patient was 3. The mean frequency of cytokines-secreting CD8 T-cells was 0.32%. CD8 T-cells secreting simultaneously IFN-γ, IL-2 and TNF-α made up for about 40% of the response and cells secreting at least 2 cytokines for about 80%, consistent with a highly polyfunctional CD8 T-cell profile. There was no difference in term of polyfunctionality when HLA restriction, or recognized viral regions and epitopes were considered. Proviral DNA was detectable in all patients but at low levels (mean = 108 copies/1 million PBMCs) while cell-associated mRNA was not detectable in 19% of patients (mean = 11 copies/1 million PBMCs when detectable). Conclusion Patients with sustained virological suppression after initiation of ART at PHI show polyfunctional CD8 T-cell and low levels of proviral DNA with an absence of residual replication in a substantial percentage of patients. The use of therapeutic vaccines in this population may promote low level of rebound viremia or control of viral replication upon ART cessation.
Resumo:
Multisensory interactions have been documented within low-level, even primary, cortices and at early post-stimulus latencies. These effects are in turn linked to behavioral and perceptual modulations. In humans, visual cortex excitability, as measured by transcranial magnetic stimulation (TMS) induced phosphenes, can be reliably enhanced by the co-presentation of sounds. This enhancement occurs at pre-perceptual stages and is selective for different types of complex sounds. However, the source(s) of auditory inputs effectuating these excitability changes in primary visual cortex remain disputed. The present study sought to determine if direct connections between low-level auditory cortices and primary visual cortex are mediating these kinds of effects by varying the pitch and bandwidth of the sounds co-presented with single-pulse TMS over the occipital pole. Our results from 10 healthy young adults indicate that both the central frequency and bandwidth of a sound independently affect the excitability of visual cortex during processing stages as early as 30 msec post-sound onset. Such findings are consistent with direct connections mediating early-latency, low-level multisensory interactions within visual cortices.
Resumo:
Homologous recombination provides a major pathway for the repair of DNA double-strand breaks in mammalian cells. Defects in homologous recombination can lead to high levels of chromosomal translocations or deletions, which may promote cell transformation and cancer development. A key component of this process is RAD51. In comparison to RecA, the bacterial homologue, human RAD51 protein exhibits low-level strand-exchange activity in vitro. This activity can, however, be stimulated by the presence of high salt. Here, we have investigated the mechanistic basis for this stimulation. We show that high ionic strength favours the co-aggregation of RAD51-single-stranded DNA (ssDNA) nucleoprotein filaments with naked duplex DNA, to form a complex in which the search for homologous sequences takes place. High ionic strength allows differential binding of RAD51 to ssDNA and double-stranded DNA (dsDNA), such that ssDNA-RAD51 interactions are unaffected, whereas those between RAD51 and dsDNA are destabilized. Most importantly, high salt induces a conformational change in RAD51, leading to the formation of extended nucleoprotein filaments on ssDNA. These extended filaments mimic the active form of the Escherichia coli RecA-ssDNA filament that exhibits efficient strand-exchange activity.
Resumo:
Dermatologic surgery has evolved enormously within the past few years especially for the treatment of varicose veins and telangiectasias. New minimally-invasive techniques have been developed: lasers, echo-sclerosis, surgery with tumescent anesthesia and endovascular treatment of saphenous veins. Most interventions can be performed with local anesthesia in the office setting. These new treatments are intended to decrease the risks of surgery, reduce medical costs and the necessity for hospitalization, and improve functional and esthetic results.
Resumo:
A procedure was developed for determining Pu-241 activity in environmental samples. This beta emitter isotope of plutonium was measured by ultra low level liquid scintillation, after several separation and purification steps that involved the use of a highly selective extraction chromatographic resin (Eichrom-TEVA). Due to the lack of reference material for Pu-241, the method was nevertheless validated using four IAEA reference sediments with information values for Pu-241. Next, the method was used to determine the Pu-241 activity in alpine soils of Switzerland and France. The Pu-241/Pu-239,Pu-240 and Pu-238/Pu-239,Pu-240 activity ratios confirmed that Pu contamination in the tested alpine soils originated mainly from global fallout from nuclear weapon tests conducted in the fifties and sixties. Estimation of the date of the contamination, using the Pu-241/Am-241 age-dating method, further confirmed this origin. However, the Pu-241/Am-241 dating method was limited to samples where Pu-Am fractionation was insignificant. If any, the contribution of the Chernobyl accident is negligible.
Resumo:
Members of the Sox gene family of transcription factors are defined by the presence of an 80 amino acid homology domain, the High Mobility Group (HMG) box. Here we report the cloning and initial analysis of murine Sox-13 . The 984 amino acids Sox-13 protein contains a single HMG box, a leucine zipper motif and a glutamine-rich stretch. These characteristics are shared with another member of the Sox gene family, Sox-6. High level embryonic expression of Sox-13 occurs uniquely in the arterial walls of 13.5 days post coitum (dpc) mice and later. Low level expression was observed in the inner ear of 13.5 dpc mice and in a limited number of cells in the thymus of 16.5 dpc mice, from which Sox-13 was originally cloned. At 18.5 dpc, Sox-13 is expressed in the tracheal epithelium below the vocal cord and in the hair follicles. The Sox-13 protein binds to the consensus HMG box motif, AACAAAG, but does not transactivate transcription through a concatamer of this motif. Sox-13, like other members of the Sox family likely plays an important role in development.
Resumo:
Recent multisensory research has emphasized the occurrence of early, low-level interactions in humans. As such, it is proving increasingly necessary to also consider the kinds of information likely extracted from the unisensory signals that are available at the time and location of these interaction effects. This review addresses current evidence regarding how the spatio-temporal brain dynamics of auditory information processing likely curtails the information content of multisensory interactions observable in humans at a given latency and within a given brain region. First, we consider the time course of signal propagation as a limitation on when auditory information (of any kind) can impact the responsiveness of a given brain region. Next, we overview the dual pathway model for the treatment of auditory spatial and object information ranging from rudimentary to complex environmental stimuli. These dual pathways are considered an intrinsic feature of auditory information processing, which are not only partially distinct in their associated brain networks, but also (and perhaps more importantly) manifest only after several tens of milliseconds of cortical signal processing. This architecture of auditory functioning would thus pose a constraint on when and in which brain regions specific spatial and object information are available for multisensory interactions. We then separately consider evidence regarding mechanisms and dynamics of spatial and object processing with a particular emphasis on when discriminations along either dimension are likely performed by specific brain regions. We conclude by discussing open issues and directions for future research.
Resumo:
Sensory information can interact to impact perception and behavior. Foods are appreciated according to their appearance, smell, taste and texture. Athletes and dancers combine visual, auditory, and somatosensory information to coordinate their movements. Under laboratory settings, detection and discrimination are likewise facilitated by multisensory signals. Research over the past several decades has shown that the requisite anatomy exists to support interactions between sensory systems in regions canonically designated as exclusively unisensory in their function and, more recently, that neural response interactions occur within these same regions, including even primary cortices and thalamic nuclei, at early post-stimulus latencies. Here, we review evidence concerning direct links between early, low-level neural response interactions and behavioral measures of multisensory integration.