106 resultados para LI-9
Resumo:
Among numerous magnetic resonance imaging (MRI) techniques, perfusion MRI provides insight into the passage of blood through the brain's vascular network non-invasively. Studying disease models and transgenic mice would intrinsically help understanding the underlying brain functions, cerebrovascular disease and brain disorders. This study evaluates the feasibility of performing continuous arterial spin labeling (CASL) on all cranial arteries for mapping murine cerebral blood flow at 9.4 T. We showed that with an active-detuned two-coil system, a labeling efficiency of 0.82 ± 0.03 was achieved with minimal magnetization transfer residuals in brain. The resulting cerebral blood flow of healthy mouse was 99 ± 26 mL/100g/min, in excellent agreement with other techniques. In conclusion, high magnetic fields deliver high sensitivity and allowing not only CASL but also other MR techniques, i.e. (1)H MRS and diffusion MRI etc, in studying murine brains.
Resumo:
With improved B 0 homogeneity along with satisfactory gradient performance at high magnetic fields, snapshot gradient-recalled echo-planar imaging (GRE-EPI) would perform at long echo times (TEs) on the order of T2*, which intrinsically allows obtaining strongly T2*-weighted images with embedded substantial anatomical details in ultrashort time. The aim of this study was to investigate the feasibility and quality of long TE snapshot GRE-EPI images of rat brain at 9.4 T. When compensating for B 0 inhomogeneities, especially second-order shim terms, a 200 x 200 microm2 in-plane resolution image was reproducibly obtained at long TE (>25 ms). The resulting coronal images at 30 ms had diminished geometric distortions and, thus, embedded substantial anatomical details. Concurrently with the very consistent stability, such GRE-EPI images should permit to resolve functional data not only with high specificity but also with substantial anatomical details, therefore allowing coregistration of the acquired functional data on the same image data set.
Resumo:
OBJECTIVES: A new caval tree system was designed for realistic in vitro simulation. The objective of our study was to assess cannula performance for virtually wall-less versus standard percutaneous thin-walled venous cannulas in a setting of venous collapse in case of negative pressure. METHODS: For a collapsible caval model, a very flexible plastic material was selected, and a model with nine afferent veins was designed according to the anatomy of the vena cava. A flow bench was built including a lower reservoir holding the caval tree, built by taking into account the main afferent vessels and their flow provided by a reservoir 6 cm above. A cannula was inserted in this caval tree and connected to a centrifugal pump that, in turn, was connected to a reservoir positioned 83 cm above the second lower reservoir (after-load = 60 mmHg). Using the same pre-load, the simulated venous drainage for cardiopulmonary bypass was realized using a 24 F wall-less cannula (Smartcanula) and 25 F percutaneous cannula (Biomedicus), and stepwise increased augmentation (1500 RPM, 2000 and 2500 RPM) of venous drainage. RESULTS: For the thin wall and the wall-less cannulas, 36 pairs of flow and pressure measurements were realized for three different RPM values. The mean Q-values at 1500, 2000 and 2500 RPM were: 3.98 ± 0.01, 6.27 ± 0.02 and 9.81 ± 0.02 l/min for the wall-less cannula (P <0.0001), versus 2.74 ± 0.02, 3.06 ± 0.05, 6.78 ± 0.02 l/min for the thin-wall cannula (P <0.0001). The corresponding inlet pressure values were: -8.88 ± 0.01, -23.69 ± 0.81 and -70.22 ± 0.18 mmHg for the wall-less cannula (P <0.0001), versus -36.69 ± 1.88, -80.85 ± 1.71 and -101.83 ± 0.45 mmHg for the thin-wall cannula (P <0.0001). The thin-wall cannula showed mean Q-values 37% less and mean P values 26% more when compared with the wall-less cannula (P <0.0001). CONCLUSIONS: Our in vitro water test was able to mimic a negative pressure situation, where the wall-less cannula design performs better compared with the traditional thin-wall cannula.
Resumo:
Multiple lines of evidence show that matrix metalloproteinases (MMPs) are involved in the peripheral neural system degenerative and regenerative processes. MMP-9 was suggested in particular to play a role in the peripheral nerve after injury or during Wallerian degeneration. Interestingly, our previous analysis of Lpin1 mutant mice (which present morphological signs of active demyelination and acute inflammatory cell migration, similar to processes present in the PNS undergoing Wallerian degeneration) revealed an accumulation of MMP-9 in the endoneurium of affected animals. We therefore generated a mouse line lacking both the Lpin1 and the MMP-9 genes in order to determine if MMP-9 plays a role in either inhibition or potentiation of the demyelinating phenotype present in Lpin1 knockout mice. The inactivation of MMP-9 alone did not lead to defects in PNS structure or function. Interestingly we observed that the double mutant animals showed reduced nerve conduction velocity, lower myelin protein mRNA expressions, and had more histological abnormalities as compared to the Lpin1 single mutants. In addition, based on immunohistochemical analysis and macrophage markers mRNA expression, we found a lower macrophage content in the sciatic nerve of the double mutant animals. Together our data indicate that MMP-9 plays a role in macrophage recruitment during postinjury PNS regeneration processes and suggest that slower macrophage infiltration delays regenerative processes in PNS.
Resumo:
In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.
Resumo:
Purpose: Involvement of salivary glands with mucosa-associated lymphoid tissue (MALT) lymphoma is rare. This retrospective study was performed to assess the clinical profile, treatment outcome, and prognostic factors of MALT lymphoma of the salivary glands.Methods and Materials: Thirteen member centers of the Rare Cancer Network from 10 countries participated, providing data on 63 patients. The median age was 58 years; 47 patients were female and 16 were male. The parotid glands were involved in 49 cases, submandibular in 15, and minor glands in 3. Multiple glands were involved in 9 patients. Staging was as follows: IE in 34, IIE in 12, IIIE in 2, and IV in 15 patients.Results: Surgery (S) alone was performed in 9, radiotherapy (RI) alone in 8, and chemotherapy (CT) alone in 4 patients. Forty-one patients received combined modality treatment (S + RT in 23, S + CT in 8, RT + CT in 4, and all three modalities in 6 patients). No active treatment was given in one case. After initial treatment there was no tumor in 57 patients and residual tumor in 5. Tumor progression was observed in 23 (36.5%) (local in 1, other salivary glands in 10, lymph nodes in 11, and elsewhere in 6). Five patients died of disease progression and the other 5 of other causes. The 5-year disease-free survival, disease-specific survival, and overall survival were 54.4%, 93.2%, and 81.7%, respectively. Factors influencing disease-free survival were use of RI, stage, and residual tumor (p < 0.01). Factors influencing disease-specific survival were stage, recurrence, and residual tumor (p < 0.01).Conclusions: To our knowledge, this report represents the largest series of MALT lymphomas of the salivary glands published to date. This disease may involve all salivary glands either initially or subsequently in 30% of patients. Recurrences may occur in up to 35% of patients at 5 years; however, survival is not affected. Radiotherapy is the only treatment modality that improves disease-free survival. (C) 2012 Elsevier Inc.
Resumo:
The outcome of infection depends on multiple layers of immune regulation, with innate immunity playing a decisive role in shaping protection or pathogenic sequelae of acquired immunity. The contribution of pattern recognition receptors and adaptor molecules in immunity to malaria remains poorly understood. Here, we interrogate the role of the caspase recruitment domain-containing protein 9 (CARD9) signaling pathway in the development of experimental cerebral malaria (ECM) using the murine Plasmodium berghei ANKA infection model. CARD9 expression was upregulated in the brains of infected wild-type (WT) mice, suggesting a potential role for this pathway in ECM pathogenesis. However, P. berghei ANKA-infected Card9(-/-) mice succumbed to neurological signs and presented with disrupted blood-brain barriers similar to WT mice. Furthermore, consistent with the immunological features associated with ECM in WT mice, Card9(-/-) mice revealed (i) elevated levels of proinflammatory responses, (ii) high frequencies of activated T cells, and (iii) CD8(+) T cell arrest in the cerebral microvasculature. We conclude that ECM develops independently of the CARD9 signaling pathway.
Resumo:
Rapport de synthèse : La présence de trois canaux d'eau, appelés aquaporines AQP1, AQP4 et AQP9, a été observée dans le cerveau sain ainsi que dans plusieurs modèles des pathologies cérébrales des rongeurs. Peu est connu sur la distribution des AQP dans le cerveau des primates. Cette connaissance sera utile pour des futurs essaies médicamenteux qui visent à prévenir la formation des oedèmes cérébraux. Nous avons étudié l'expression et la distribution cellulaire des AQP1, 4 et 9 dans le cerveau primate non-humain. La distribution des AQP4 dans le cerveau primate non-humain a été observée dans des astrocytes périvasculaires, comparable à l'observation faite dans le cerveau du rongeur. Contrairement à ce qui a été décrit chez le rongeur, l'AQPI chez le primate est exprimée dans les processus et dans les prolongations périvasculaires d'un sous-type d'astrocytes, qui est avant tout localisé dans la matière blanche et dans la glia limitans et qui est peut-être impliqué dans l'homéostasie de l'eau. L'AQPI a aussi été observée dans les neurones qui innervent des vaisseaux sanguins de la pie-mère, suggérant un rôle possible dans la régularisation de la vascularisation cérébrale. Comme décrit chez le rongeur, le mRNA et les protéines de l'AQP9 ont été détectés dans des astrocytes et dans des neurones catécholaminergiques. Chez le primate, des localisations supplémentaires ont été observées dans des populations de neurones placées dans certaines zones corticales. Cet article décrit une étude détaillée sur la distribution des AQP1, 4 et 9 dans le cerveau primate non-humain. Les observations faites s'additionnent aux data déjà publié sur le cerveau du rongeur. Ces importantes différences entre les espèces doivent être considérées dans l'évaluation des médicaments qui agiront potentiellement sur des AQP des primates non-humains avant d'entrer dans la phase des essais cliniques sur des humains.
Resumo:
Tumors are often compared to wounds that do not heal, where the crosstalk between tumor cells and their surrounding stroma is crucial at all stages of development, from the initial primary growth to metastasis. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts, also referred to as "cancer-associated fibroblasts" (CAFs), primarily, but not exclusively, in response to transforming growth factor-ß (TGF-ß). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among molecules implicated in stroma remodeling, matrix metalloproteinases (MMPs), and MMP-g in particular, play a prominent role. However, the mechanisms that regulate MMP-g activation and function remain poorly understood. Recent evidence indicates that tumor cell surface association of MMP-g is an important event in its activation, and more generally in tumor growth and invasion. In the present work we address the potential association of MMP-g activity with cell-surface recruitment to human fibroblasts. We show for the first time that recruitment of MMP-g to the MRC-5 fibroblast cell surface occurs through the fibronectin-like (FN) domain, shared only by MMP-g and MMP-2 among all the MMPs. Functional assays suggest that both the pro- and active form of MMP-g trigger a-smooth muscle actin (aSMA) expression in resting fibroblasts that reflects myofibroblast differentiation, possibly through TGF-ß activation. Moreover, the FN domain of MMP-g inhibits both MMP-g-induced TGF-ß activation and aSMA expression by sequestering MMP-g. Xenograft experiments in NOD/SCID mice using HT1080 fibrosarcoma or MDA-MD231 breast adenocarcinoma cells stably expressing the FN domain of MMP-g revealed no changes in primary tumor growth. However, in the context of metastasis, expression of the FN domain by these same tumor cells dramatically increased their metastatic proclivity whereas expression of wt MMP-g either promoted no change or actually reduced the number of metastases. We observed a decrease of an active form of MMP-g in MDA-MB231 cells overexpressing the FN domain suggesting that the FN domain may inhibit MMP-g activity in Tumors are often compared to wounds that do not heal, where the crosstalk between tumor cells and their surrounding stroma is crucial at all stages of development, from the initial primary growth to metastasis. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts, also referred to as "cancer-associated fibroblasts" (CAFs), primarily, but not exclusively, in response to transforming growth factor-ß (TGF-ß). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among molecules implicated in stroma remodeling, matrix metalloproteinases (MMPs), and MMP-g in particular, play a prominent role. However, the mechanisms that regulate MMP-g activation and function remain poorly understood. Recent evidence indicates that tumor cell surface association of MMP-g is an important event in its activation, and more generally in tumor growth and invasion. In the present work we address the potential association of MMP-g activity with cell-surface recruitment to human fibroblasts. We show for the first time that recruitment of MMP-g to the MRC-5 fibroblast cell surface occurs through the fibronectin-like (FN) domain, shared only by MMP-g and MMP-2 among all the MMPs. Functional assays suggest that both the pro- and active form of MMP-g trigger a-smooth muscle actin (aSMA) expression in resting fibroblasts that reflects myofibroblast differentiation, possibly through TGF-ß activation. Moreover, the FN domain of MMP-g inhibits both MMP-g-induced TGF-ß activation and aSMA expression by sequestering MMP-g. Xenograft experiments in NOD/SCID mice using HT1080 fibrosarcoma or MDA-MD231 breast adenocarcinoma cells stably expressing the FN domain of MMP-9 revealed no changes in primary tumor growth. However, in the context of metastasis, expression of the FN domain by these same tumor cells dramatically increased their metastatic proclivity whereas expression of wt MMP-g either promoted no change or actually reduced the number of metastases. We observed a decrease of an active form of MMP-9 in MDA-MB231 cells overexpressing the FN domain suggesting that the FN domain may inhibit MMP-9 activity in those cells and therefore prevent MMP-9-induced activation of TGF-b, which results in increased invasion. Curiously, xenografts of SW480 colorectal adenocarcinoma cells stably expressing the FN domain of MMP-9 displayed reduced growth at both the primary (subcutaneous) injection site and the lungs of NOD/SCID mice, in experimental metastasis assays, whilst the same cells overexpressing wt MMP-9 showed enhanced growth and dissemination. Gelatin zymography of conditioned medium revealed that these effects may be due to the FN domain, which displaces MMP-9 from SW480 cell surface. These observations suggest a dual role of MMP-9 and its FN domain in primary tumor growth and metastasis, underscoring the notion that the effect of MMP-9 on tumor cells may depend on the cell type and highlighting possible protective effects of MMPs in tumor progression.